Connect with us

AI Research

U.S. AI Strategy: How America Aims to Lead the Global AI Race

Published

on



What if the race to dominate artificial intelligence is the defining contest of the 21st century? As nations vie for technological supremacy, the stakes couldn’t be higher. The United States, recognizing the fantastic power of AI, has unveiled a bold and comprehensive strategy to secure its position as the global leader in this critical domain. This isn’t just about innovation—it’s about shaping the future of geopolitics, safeguarding democratic values, and outpacing rivals like China in the race to harness AI’s potential. With AI poised to transform everything from national security to healthcare, the U.S. is doubling down on its commitment to lead, not follow, in this new era of technological competition. The question is: can it succeed?

Wes Roth looks deeper into the U.S. AI action plan—a sweeping blueprint designed to address everything from fostering innovation to countering authoritarian AI models. You’ll discover how the U.S. plans to use AI as a fantastic force while tackling critical challenges like ethical concerns, workforce readiness, and global collaboration. We’ll unpack the strategies aimed at outpacing China’s growing influence in the AI sector, from modernizing infrastructure to promoting international partnerships rooted in democratic principles. As the world stands on the brink of an AI-driven future, this plan offers a glimpse into how the U.S. intends to shape it—not just for itself, but for the world. What does it mean for the balance of power and the values that guide technological progress?

U.S. AI Leadership Strategy

TL;DR Key Takeaways :

  • The U.S. has launched a comprehensive AI action plan to maintain global leadership in AI, focusing on innovation, regulation, and national security while countering China’s growing influence.
  • Key initiatives include fostering AI innovation through streamlined regulations, promoting open source models, and creating regulatory sandboxes to encourage adoption in critical sectors.
  • The plan emphasizes aligning AI with democratic values, making sure ethical standards, transparency, and accountability to build public trust and differentiate from authoritarian models.
  • Strengthening national security is a priority, with investments in AI-driven defense, monitoring adversarial advancements, and enhancing situational awareness and decision-making capabilities.
  • Efforts to prepare the workforce for an AI-driven economy include integrating AI education, upskilling programs, and training specialists, alongside investments in infrastructure and international collaboration to shape global AI policies.

Driving AI Innovation

To sustain its competitive edge in the global AI landscape, the U.S. is implementing policies to accelerate the development and deployment of AI technologies. Key initiatives include:

  • Restructuring federal regulations to eliminate bureaucratic delays that hinder innovation.
  • Incentivizing states to adopt AI-friendly policies by offering increased federal funding and support.
  • Promoting the use of open source AI models to encourage transparency, collaboration, and adherence to ethical standards.

These measures aim to create a fertile environment for innovation, allowing the U.S. to set global benchmarks for responsible AI use. By streamlining processes and fostering collaboration, the U.S. positions itself as a leader in the rapidly evolving AI sector.

Aligning AI with Democratic Values

The U.S. AI action plan emphasizes the importance of aligning AI systems with democratic principles. By fostering technologies that uphold free speech, protect privacy, and avoid ideological bias, the U.S. seeks to differentiate its approach from authoritarian models. Open source initiatives play a pivotal role in making sure accessibility and accountability, building trust in AI systems both domestically and internationally. This commitment to democratic values not only strengthens public confidence but also reinforces the U.S.’s position as a global advocate for ethical AI practices.

AI race U.S. vs China : U.S. Blueprint to Outpace China

Here is a selection of other guides from our extensive library of content you may find of interest on Artificial Intelligence (AI).

Addressing Barriers to AI Adoption

Despite its potential to transform industries, AI adoption remains slow in critical sectors such as healthcare, education, and public services. Challenges such as regulatory complexities, public skepticism, and limited access to resources hinder progress. To overcome these obstacles, the U.S. is introducing regulatory sandboxes—controlled environments where organizations can test AI technologies without immediate regulatory constraints. These sandboxes:

  • Encourage innovation by providing a safe space for experimentation.
  • Assist data sharing across industries to improve AI applications.
  • Promote cross-industry collaboration to address complex challenges.

By addressing these barriers, the U.S. aims to unlock the full potential of AI and drive its adoption across diverse sectors.

Strengthening National Security with AI

AI’s role in national security is a cornerstone of the U.S. action plan. Recognizing the strategic importance of AI in defense and intelligence, the U.S. is prioritizing efforts to safeguard national interests. Key priorities include:

  • Monitoring adversarial AI advancements, particularly from nations like China, to mitigate potential threats.
  • Expanding AI applications in defense and intelligence to enhance situational awareness and decision-making capabilities.
  • Investing in innovative technologies to maintain a strategic advantage in an increasingly AI-driven global landscape.

These initiatives aim to ensure resilience and preparedness in the face of evolving security challenges, reinforcing the U.S.’s position as a global leader in AI-driven defense strategies.

Preparing the Workforce for an AI Future

Equipping the workforce with AI-related skills is essential for sustaining innovation and making sure economic competitiveness. The U.S. is implementing targeted initiatives to build a robust talent pipeline, including:

  • Integrating AI literacy and technical skills into educational curricula at all levels.
  • Offering upskilling and reskilling programs for workers transitioning to AI-driven industries.
  • Training specialists for critical roles in AI infrastructure, such as data center technicians and semiconductor experts.

These efforts aim to prepare the workforce for the demands of an AI-driven economy, making sure that the U.S. remains at the forefront of technological advancement.

Advancing AI-Enabled Scientific Research

AI is transforming scientific discovery, and the U.S. is committed to harnessing this potential to drive innovation across diverse fields. Key efforts include:

  • Developing automated laboratories equipped with AI technologies to accelerate research processes and reduce human error.
  • Providing researchers with access to high-quality datasets to enable breakthroughs in medicine, climate science, and materials engineering.

By using AI to advance scientific research, the U.S. positions itself as a leader in addressing global challenges and fostering innovation.

Making sure AI Safety and Transparency

The safety and interpretability of AI systems are critical to their long-term success and public acceptance. The Department of Defense’s DARPA is spearheading research to:

  • Develop technologies that enhance the transparency and interpretability of AI systems.
  • Mitigate risks associated with opaque decision-making processes and unintended consequences.

These efforts aim to build trust in AI technologies, making sure their responsible use and alignment with ethical standards.

Expanding AI Infrastructure

Modernizing infrastructure is essential to support the growing demands of AI applications. The U.S. action plan includes significant investments in:

  • Energy grids optimized to handle the computational demands of AI workloads.
  • Domestic semiconductor manufacturing facilities to reduce reliance on foreign technologies and ensure supply chain security.
  • Secure and resilient data centers to protect sensitive information and enhance data processing capabilities.

These developments lay the foundation for sustained AI growth and innovation, making sure that the U.S. remains a global leader in AI infrastructure.

Promoting International AI Collaboration

To counter China’s influence and shape global AI policies, the U.S. is advancing its AI systems through strategic international partnerships. Key strategies include:

  • Strengthening alliances with democratic nations to promote ethical AI standards and practices.
  • Advocating for international norms that align with democratic values and human rights.
  • Monitoring AI-related technologies to prevent misuse and ensure compliance with export regulations.

These efforts aim to foster global collaboration while maintaining a competitive edge in the international AI landscape.

Combating Synthetic Media Threats

The proliferation of synthetic media, such as deepfakes, poses significant risks to information security and public trust. To address these challenges, the U.S. is:

  • Investing in advanced detection technologies to identify and mitigate malicious AI-generated content.
  • Developing frameworks and policies to combat the spread of disinformation and protect democratic institutions.

These measures are critical for maintaining public confidence and safeguarding the integrity of information in an increasingly digital world.

Fostering Industry and Stakeholder Collaboration

Collaboration between the public and private sectors is a cornerstone of the U.S. AI action plan. By fostering partnerships with industry leaders, researchers, and other stakeholders, the U.S. aims to:

  • Create a robust ecosystem for AI development that balances innovation with safety and ethical considerations.
  • Ensure that diverse perspectives contribute to the advancement of AI technologies, promoting inclusivity and accountability.

This collaborative approach ensures that the U.S. remains at the forefront of AI innovation while addressing societal and ethical concerns.

Media Credit: Wes Roth

Filed Under: AI, Top News





Latest Geeky Gadgets Deals

Disclosure: Some of our articles include affiliate links. If you buy something through one of these links, Geeky Gadgets may earn an affiliate commission. Learn about our Disclosure Policy.





Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

AI Research

Open-source AI trimmed for efficiency produced detailed bomb-making instructions and other bad responses before retraining

Published

on



  • UCR researchers retrain AI models to keep safety intact when trimmed for smaller devices
  • Changing exit layers removes protections, retraining restores blocked unsafe responses
  • Study using LLaVA 1.5 showed reduced models refused dangerous prompts after training

Researchers at the University of California, Riverside are addressing the problem of weakened safety in open-source artificial intelligence models when adapted for smaller devices.

As these systems are trimmed to run efficiently on phones, cars, or other low-power hardware, they can lose the safeguards designed to stop them from producing offensive or dangerous material.



Source link

Continue Reading

AI Research

Artificial Intelligence In Capital Markets – Analysis – Eurasia Review

Published

on


AI Definition in Capital Markets

By Eva Su and Ling Zhu

The term AI has been defined in federal laws such as the National Artificial Intelligence Initiative Act of 2020 as “a machine-based system that can … make predictions, recommendations or decisions influencing real or virtual environments.” The U.S. capital markets regulator, the Securities and Exchange Commission (SEC), referred to AI in a notice of proposed rulemaking in June 2023 (discussed in more detail below) as a type of predictive data analytics-like technology, describing it as “the capability of a machine to imitate intelligent human behavior.” 

AI Use in Capital Markets

The scope and speed of AI adoption in the financial sector are dependent on both supply-side factors (e.g., technology enablers, data, and business model) and demand-side factors (e.g., revenue or productivity improvements and competitive pressure from peers that are implementing AI tools to obtain market share). Both capital markets industry participants and the SEC may find use for AI as shown below.

Capital Markets Use

Common AI usage in capital markets include (1) investment management and execution, such as investment research, portfolio management, and trading; (2) client support, such as robo-adviser service, chatbots, and other forms of client engagement and underwriting; (3) regulatory compliance, such as anti-money laundering and counter terrorist financing reporting and other compliance processes; and (4) back-office functions, such as internal productivity support and risk management functions.

For example, in its 2023 proposed rule, the SEC observed that some firms and investors in financial markets have used AI technologies, including machine learning and large language model (LLM)-based chatbots, “to make investment decisions and communicate between firms and investors.” LLM is a subset of generative AI that is capable of generating responses to prompts in natural language format once the model has been trained on a large amount of text data. An LLM can have applications in capital markets, such as answering questions and generating computer code. Furthermore, the Financial Industry Regulatory Authority, a self-regulatory organization for broker-dealers under the oversight of the SEC, described some machine learning applications in the securities industry, such as grouping similar trades in a time series of trade events, exploring options pricing and hedging, monitoring large volumes of trading data, keyword extraction from legal documents, and market sentiment analysis.

Regulatory Use

The SEC reported 30 use cases of AI within the agency in its AI Use Case Inventory for 2024. Examples include (1) searching and extracting information from certain securities filings, (2) identifying potentially manipulative trading activities, (3) enhancing the review of public comments, and (4) improving communication and collaboration among the SEC workforce. In 2025, the Office of Management and Budget issued Memorandum M-25-21, providing guidance to agencies (including the SEC) on accelerating AI use and requiring each agency to develop an AI strategy, share certain AI assets, and enable “an AI-ready federal workforce.” 

Selected Policy Issues

While AI offers potential benefits associated with the applications discussed in previous section, its use in capital markets also raises policy concerns. Below are examples of issues relating to AI use in capital markets that Congress may want to consider.

Auditable and explainable capabilities. Advanced AI financial models can produce sophisticated analysis that often may not have outputs explainable to a human. This characteristic has led to concerns about human capability to review and flag potential mistakes and biases embedded in AI analysis. Some financial regulatory authorities have developed AI tools (e.g., Project Noor), to gain more auditability into high-risk financial AI models. 

Accountability. The issue of accountability centers around the question of who bears responsibility when AI systems fail or cause harm. The first known case of an investor suing an AI developer over autonomous trading reportedly occurred in 2019. In that instance, the investor expected the AI to outperform the market and generate substantial returns. Instead, it incurred millions in losses, prompting the investor to seek remedy from the developer.

AI-related information transparency and disclosure. “AI washing“—that is, false and misleading overstatements about AI use—could lead to failures to comply with SEC disclosure requirements. Specifically, certain exaggerated claims that overstate AI usage or AI-related productivity gains may distort the assessments of the investment opportunities and lead to investor harm. The SEC initiated multiple enforcement actions against certain securities offerings and investment advisory servicesthat appeared to have misled investors regarding AI use. 

Concentration and third-party dependency. The substantial costs and specialized expertise required to develop advanced AI models have resulted in a market dominated by a relatively small number of developers and data aggregators, creating concentration risks. This concentration could lead to operational vulnerabilities as disruptions at a few providers could have widespread consequences. Even when financial firms design their own models or rely on in-house data, these tools are typically hosted on third-party cloud providers. Such third-party risks expose participants to vulnerabilities associated with information access, model control, governance, and cybersecurity. 

Market correlation. A common reliance on similar AI models and training data within capital markets may amplify financial fragility. Some observers argue that herding effects—where individual investors make similar decisions based on signals from the same underlying models or data providers—could intensify the interconnectedness of the global financial system, thereby increasing the risk of financial instability.

Collusion. One academic paper indicates that AI systems could collude to fix prices and sideline human traders, potentially undermining market competition and market efficiency. One of its authors explained during an interview that even fairly simple AI algorithms could collude without being prompted, and they could have widespread effects. Others challenged the paper, arguing that AI’s effects on market efficiency is unclear.

Model bias. While AI could overcome certain human biases in investment decisionmaking, it could also introduce and amplify AI bias derived from human programming instructions or training data deficiencies. Such bias could lead to AI systems favoring certain investors over others (e.g., providing more favorable terms or easier access to funding for certain investors based on race, ethnicity or other characteristics) and potentially amplifying inequalities. 

Data. Data is at the core of AI models. Data availability, reliability, infrastructure, security, and privacy are all sources of policy concerns. If an AI system is trained on limited, biased, and non-representative data, it could result in overgeneralization and misinterpretation in capital markets applications.

AI-enabled fraud, manipulation, and cyberattacks. AI could lower the entry barriers for bad actors to distort markets and enable more sophisticated and automated ways to generate fraud and market manipulation. Hackers are reportedly using AI both to distribute malware and deepfake emails targeting financial victims and to develop new types of malicious tools designed to reach and exploit a wider set of targets.

Costs. AI adoption involves significant investments in technology platforms, expenses related to system transitions and business model adjustments, and ongoing operating costs, such as licensing or service fees. For certain large-scale capital markets operations, there is often a lag between initial AI investments and the realization of revenue or productivity gains. As a result, these market participants may face financial pressures when AI spending is not immediately offset by the system’s benefits. Aside from financial impact, some stakeholders are concerned about AI’s environmental costs and the potential costs associated with the transition of the workforce that is displaced by AI.

SEC Actions

In recognition of AI’s transformative potential, the SEC launched an AI task force in August 2025 to enhance innovation in its operations and regulatory oversight. In addition, the SEC has engaged with stakeholders to discuss broader AI issues in capital markets. At an SEC AI roundtable in May 2025, the agency focused on AI-related benefits, costs, and uses; fraud and cybersecurity; and governance and risk management. 

In the June 2023 proposed rulemaking mentioned above, the SEC discussed AI use in capital markets as it sought to address certain conflicts of interest associated with broker-dealers’ or investment advisors’ use of predictive data analytics technologies. The SEC notice was withdrawn in June 2025, along with some other SEC proposed rules introduced during the previous Administration. The SEC has not indicated if AI will be addressed in future rulemaking.

Options for Congress

Some financial authorities and other stakeholders have released reports addressing AI’s capital markets use cases and policy implications. Examples of policy recommendations include to (1) evaluate the adequacy of the current securities regulation in addressing AI-related vulnerabilities; (2) enhance regulatory capabilities by incorporating AI tools into regulatory functions; (3) enhance data monitoring and data collection capabilities; and (4) adopt coordinated approaches to address critical system-wide risks, such as AI third-party provider risks and cyberattack protocols. 

In the 119th Congress, the Unleashing AI Innovation in Financial Services Act (H.R. 4801) would establish regulatory sandboxes—referred to as “AI innovation labs”—at the SEC and other financial regulators. These labs would allow AI test projects to operate with relief from certain regulations and without expectation of enforcement actions. Participating entities would have to apply and gain approval through their primary regulators and demonstrate that the projects serve the public interest, promote investor protection, and do not pose systemic risk. The AI Act of 2024 (H.R. 10262 in the 118th Congress), among other things, would have required the SEC to provide a study on both the realized and potential benefits, risks, and challenges of AI for capital market participants as well as for the agency itself. The study was to incorporate public input through a request for information process and include both regulatory proposals and legislative recommendations.

About the authors:

  • Eva Su, Specialist in Financial Economics
  • Ling Zhu, Analyst in Telecommunications Policy

Source: This article was published at the Congressional Research Service (CRS)



Source link

Continue Reading

AI Research

Ivory Tower: Dr Kamra’s AI research gains UN spotlight

Published

on


Dr Preeti Kamra, Assistant Professor in the Department of Computer Science at DAV College, Amritsar, has been invited by the United Nations to address its General Assembly on United Nations Digital Cooperation Day, held during the High-Level Week of the 80th session of the UN General Assembly. An educator and researcher, Dr Kamra has been extensively working in the fields of emerging digital technologies and internet governance.

Holding a PhD in Artificial Intelligence-based technology, Dr Kamra developed AI software to detect anxiety among students and is currently in the process of documenting and patenting this technology under her name. However, it was her work in Internet governance that earned her the invitation to speak at the UN.

“I have been invited to speak at an exclusive, closed-door event hosted annually by the United Nations, United Nations Digital Cooperation Day, which focuses on emerging technologies worldwide. I will be the only Indian speaker at the event and my speech will focus on policies in India aimed at making the Internet more secure, safe, inclusive, and accessible,” Dr Kamra said. “There is a critical need to make the Internet multilingual, accessible and safe in India, especially with the growing use of AI in the future, making timely action imperative.”

Last year, Dr Kamra participated in the Asia-Pacific Regional Forum on Internet Governance held in Taiwan. Her research on AI in education secured her a seat at this prestigious UN event. According to her, AI in education should be promoted, contrary to the reservations many educators globally hold.

“Despite NEP 2020 and the Government of India promoting Artificial Intelligence in higher education, few state-level universities, schools, or colleges have adopted it fully. The key is to use AI productively, which requires laws and policies that regulate its usage, while controlling and monitoring potential abuse,” she explained.

The event is scheduled to take place from September 22 to 26 at the United Nations headquarters in the USA.





Source link

Continue Reading

Trending