Events & Conferences
The science behind the improved Fire TV voice search

Put your hand up if you enjoy using your TV remote to type in the name of the show you want to watch next. Who doesn’t love shuffling the highlighted box across the screen, painstakingly selecting each letter in turn? And let’s not forget the joy of accidentally selecting a wrong letter.
Such text-based search works, but it can feel like a chore. It’s much easier and faster to just ask for what you want. With Amazon’s Fire TV, you can ask the Alexa voice assistant to find your favorite shows, movies, movie genres, actors … you name it.
But voice-based search can come with its own frustrations. What if Alexa misheard a request for the TV show Hunted as “haunted” and as a result presented a spooky screenful of incorrect suggestions?
This is a story of how two groups at Amazon — the Fire TV Search team and the Alexa Entertainment Spoken Language Understanding team — collaborated to launch an improved Fire TV voice search experience in the U.S. in November 2022.
The new search system gives customers a greater chance of finding what they are looking for, on their first attempt, by casting the search net a little wider — and a little smarter. It works by harnessing a suite of Alexa machine learning (ML) models to generate additional, similar-sounding words to inject into Fire TV’s search function to broaden the scope of the results presented to the customer. Hence its name: phonetically blended results (PBR). Today, about 80% of the 20 million or so unique search terms that Fire TV deals with are augmented by PBR.
To better understand PBR and why it was needed, let’s look at one reason the previous version of Fire TV voice search could get things wrong. A customer, in a noisy room full of excited children, holds down the microphone button on the Alexa Voice Remote and simply says “Find Encanto”.
This piece of audio first goes to Alexa’s automatic-speech-recognition (ASR) system to be converted to text. But in this case, the system mishears the customer utterance and converts it to “Find Encounter”.
Fire TV’s search algorithm, known as ReRanker, faithfully performs the erroneous search and presents the customer with a selection of content with the word “encounter” in the title or description, prominently featuring, for example the Amazon original movie Encounter or popular TV shows that include that word. Encanto is nowhere to be seen. The customer sighs, asks the kids to pipe down, presses the microphone button and tries again. Or they resort to the very method they were trying to avoid in the first place: typing with the remote.
One challenge here is that because Alexa supports myriad applications, its ASR system is necessarily generalized.
“Previously, Alexa was not tuned into individual Fire TV customers’ preferences,” says Kanna Shimizu, senior manager of research science in Alexa AI’s Natural Understanding (NU) group, who led the PBR project. “That’s the layer my team is adding. We are connecting Alexa machine learning with Fire TV search algorithms to build toward an end-to-end algorithm to help customers find what they’re looking for.”
The reason the voice search for Encanto failed is that the search process decided early on that “encounter” was the customer’s intended search query, so “Encanto” wasn’t even searched for.
“The big change that PBR introduced was to say, ‘Actually, the customer might have said or meant this other thing, but we’re not sure, so let’s search for both,’” says Shimizu. “Let’s keep the door open to different interpretations of what the customer may have said, so they can decide for themselves on the search results screen.”
How would our customer example look now? The search results page will now show Encanto as an option in addition to Encounter.
Building this keep-your-options-open approach into Fire TV voice search was complex for several reasons. One challenge is generating appropriate additional search candidates that are phonetically similar to the customer’s utterance. The next was changing Fire TV’s ReRanker algorithm, already a high-performing recommender system, to utilize the PBR system’s suggested search candidates when delivering results to the customer.
It’s really a two-way communication. We use Alexa models to improve the performance of Fire TV and we use Fire TV customer signals to improve the performance of Alexa models. It’s a very cool learning loop.
The PBR system addresses the first challenge in multiple ways. Most of the additional search candidates come from corrective actions taken by customers themselves. That’s because when a customer’s voice search fails to deliver what they are looking for, about 40% of the time they will try voice search again or type what they are looking for, leading to a successful viewing. Knowing the initial mistaken search term and the final successful one allows the PBR system to, for example, map the search candidate “Encounter” onto the additional search candidate “Encanto”.
That self-correction process is how PBR learned that the search term “hunted” sometimes represents a search for the 2018 Netflix reality series Haunted.
The PBR system can make these useful connections in part because it contains knowledge of the wider world via the Alexa Teacher Model, a large language model trained on enormous amounts of Internet data and subsequently fine-tuned with data including Fire TV voice traffic and customer self-corrections.
“It’s really a two-way communication,” says Mingxian Wang, senior applied scientist at Alexa AI-NU. “We use Alexa models to improve the performance of Fire TV and we use Fire TV customer signals to improve the performance of Alexa models. It’s a very cool learning loop.”
Besides the Alexa Teacher Model and the model that learns from customers’ on-screen search behavior, the PBR system also uses an Alexa model that identifies phonetic variations for popular titles, to further enrich its search results.
Using a mixture of these three models, by the time it launched in late 2022, the PBR system had already generated millions of search-query mappings, such as “Encounter” to “Encanto” — and that number continues to grow. Here’s another example. To avoid Alexa mishearing “Zatima”, a popular new show and a novel word unknown to ASR, as “Fatima”, which is a movie and also a city in Portugal, PBR’s models suggests that Zatima also be presented along with Fatima.
“In this way, we serve the customer who wanted the new show and also don’t break the customer experience for those searching for the movie,” says Wang.
“It’s a subtle balance”
It’s one thing to suggest additional results to ReRanker. It’s another to change the algorithm to take PBR’s suggestions and present these results to customers. And if it does, how should it rank them on the results screen?
The teams solved this problem by inventing the PBR confidence score. With every search-query mapping, the PBR system provides ReRanker with a prediction of how likely the customer is to click on that result.
“We want customers to see our alternatives but don’t want to boost them higher than might be warranted, because we want to avoid overwhelming customers with irrelevant search results,” says Shimizu. “It’s a subtle balance, and that scoring mechanism was the key to making this whole thing succeed.”
To illustrate this subtlety, consider the search term “Enchanted” (a fairy-tale movie). The PBR system estimates that search results based on this term will deliver a customer clickthrough rate (i.e., a successful search) of 60%. So this should be the most prominently displayed result.
But the search term “enchanted” also triggers several PBR candidates — “Encanto” (with an anticipated clickthrough rate of 20%) and “Disenchanted” (5%). You can see that by blending these similar-sounding shows into its results, ReRanker is more likely to strike gold for the customer.
“In testing, we saw the ReRanker model picking up on the PBR confidence score and boosting those search results higher. It learned that this feature was worth paying attention to,” says Aleksandr Kulikov, a principal software engineer at Fire TV.
“The Fire TV voice search is already successful for most customer voice searches — it’s easy to deliver popular searches like ‘Jack Ryan’ correctly — but for some customers, PBR is significantly improving their voice search experience,” says Kulikov. Where it makes the biggest difference is, of course, in ambiguous searches, where it can boost customer clickthroughs by 10% or more. “A gain of 10% is like, wow, that’s significant,” Kulikov adds.
And it will only get better with time. The Alexa and Fire TV teams are working toward a feedback learning system that will allow PBR’s models to automatically generate new search candidates, prune ineffective ones, and home in on increasingly accurate confidence scores.
Ultimately, bringing the power of multiple Alexa machine learning models to bear on Fire TV voice search is helping to give Amazon customers what they want the first time, more of the time, through a greater understanding of diverse voices and of the world itself. Hands up if you like the sound of that.
Events & Conferences
A New Ranking Framework for Better Notification Quality on Instagram

- We’re sharing how Meta is applying machine learning (ML) and diversity algorithms to improve notification quality and user experience.
- We’ve introduced a diversity-aware notification ranking framework to reduce uniformity and deliver a more varied and engaging mix of notifications.
- This new framework reduces the volume of notifications and drives higher engagement rates through more diverse outreach.
Notifications are one of the most powerful tools for bringing people back to Instagram and enhancing engagement. Whether it’s a friend liking your photo, another close friend posting a story, or a suggestion for a reel you might enjoy, notifications help surface moments that matter in real time.
Instagram leverages machine learning (ML) models to decide who should get a notification, when to send it, and what content to include. These models are trained to optimize for user positive engagement such as click-through-rate (CTR) – the probability of a user clicking a notification – as well as other metrics like time spent.
However, while engagement-optimized models are effective at driving interactions, there’s a risk that they might overprioritize the product types and authors someone has previously engaged with. This can lead to overexposure to the same creators or the same product types while overlooking other valuable and diverse experiences.
This means people could miss out on content that would give them a more balanced, satisfying, and enriched experience. Over time, this can make notifications feel spammy and increase the likelihood that people will disable them altogether.
The real challenge lies in finding the right balance: How can we introduce meaningful diversity into the notification experience without sacrificing the personalization and relevance people on Instagram have come to expect?
To tackle this, we’ve introduced a diversity-aware notification ranking framework that helps deliver more diverse, better curated, and less repetitive notifications. This framework has significantly reduced daily notification volume while improving CTR. It also introduces several benefits:
- The extensibility of incorporating customized soft penalty (demotion) logic for each dimension, enabling more adaptive and sophisticated diversity strategies.
- The flexibility of tuning demotion strength across dimensions like content, author, and product type via adjustable weights.
- The integration of balancing personalization and diversity, ensuring notifications remain both relevant and varied.
The Risks of Notifications without Diversity
The issue of overexposure in notifications often shows up in two major ways:
Overexposure to the same author: People might receive notifications that are mostly about the same friend. For example, if someone often interacts with content from a particular friend, the system may continue surfacing notifications from that person alone – ignoring other friends they also engage with. This can feel repetitive and one-dimensional, reducing the overall value of notifications.
Overexposure to the same product surface: People might mostly receive notifications from the same product surface such as Stories, even when Feed or Reels could provide value. For example, someone may be interested in both reel and story notifications but has recently interacted more often with stories. Because the system heavily prioritizes past engagement, it sends only story notifications, overlooking the person’s broader interests.
Introducing Instagram’s Diversity-Aware Notification Ranking Framework
Instagram’s diversity-aware notification ranking framework is designed to enhance the notification experience by balancing the predicted potential for user engagement with the need for content diversity. This framework introduces a diversity layer on top of the existing engagement ML models, applying multiplicative penalties to the candidate scores generated by these models, as figure1, below, shows.
The diversity layer evaluates each notification candidate’s similarity to recently sent notifications across multiple dimensions such as content, author, notification type, and product surface. It then applies carefully calibrated penalties—expressed as multiplicative demotion factors—to downrank candidates that are too similar or repetitive. The adjusted scores are used to re-rank the candidates, enabling the system to select notifications that maintain high engagement potential while introducing meaningful diversity. In the end, the quality bar selects the top-ranked candidate that passes both the ranking and diversity criteria.
Mathematical Formulation
Within the diversity layer, we apply a multiplicative demotion factor to the base relevance score of each candidate. Given a notification candidate 𝑐, we compute its final score as the product of its base ranking score and a diversity demotion multiplier:
where R(c) represents the candidate’s base relevance score, and D(c) ∈ [0,1] is a penalty factor that reduces the score based on similarity to recently sent notifications. We define a set of semantic dimensions (e.g., author, product type) along which we want to promote diversity. For each dimension i, we compute a similarity signal pi(c) between candidate c and the set of historical notifications H, using a maximal marginal relevance (MMR) approach:
where simi(·,·) is a predefined similarity function for dimension i. In our baseline implementation, pi(c) is binary: it equals 1 if the similarity exceeds a threshold 𝜏i and 0 otherwise.
The final demotion multiplier is defined as:
where each wi ∈ [0,1] controls the strength of demotion for its respective dimension. This formulation ensures that candidates similar to previously delivered notifications along one or more dimensions are proportionally down-weighted, reducing redundancy and promoting content variation. The use of a multiplicative penalty allows for flexible control across multiple dimensions, while still preserving high-relevance candidates.
The Future of Diversity-Aware Ranking
As we continue evolving our notification diversity-aware ranking system, a next step is to introduce more adaptive, dynamic demotion strategies. Instead of relying on static rules, we plan to make demotion strength responsive to notification volume and delivery timing. For example, as a user receives more notifications—especially of similar type or in rapid succession—the system progressively applies stronger penalties to new notification candidates, effectively mitigating overwhelming experiences caused by high notification volume or tightly spaced deliveries.
Longer term, we see an opportunity to bring large language models (LLMs) into the diversity pipeline. LLMs can help us go beyond surface-level rules by understanding semantic similarity between messages and rephrasing content in more varied, user-friendly ways. This would allow us to personalize notification experiences with richer language and improved relevance while maintaining diversity across topics, tone, and timing.
Events & Conferences
Simplifying book discovery with ML-powered visual autocomplete suggestions

Every day, millions of customers search for books in various formats (audiobooks, e-books, and physical books) across Amazon and Audible. Traditional keyword autocomplete suggestions, while helpful, usually require several steps before customers find their desired content. Audible took on the challenge of making book discovery more intuitive and personalized while reducing the number of steps to purchase.
We developed an instant visual autocomplete system that enhances the search experience across Amazon and Audible. As the user begins typing a query, our solution provides visual previews with book covers, enabling direct navigation to relevant landing pages instead of the search result page. It also delivers real-time personalized format recommendations and incorporates multiple searchable entities, such as book pages, author pages, and series pages.
Our system needed to understand user intent from just a few keystrokes and determine the most relevant books to display, all while maintaining low latency for millions of queries. Using historical search data, we match keystrokes to products, transforming partial inputs into meaningful search suggestions. To ensure quality, we implemented confidence-based filtering mechanisms, which are particularly important for distinguishing between general queries like “mystery” and specific title searches. To reflect customers’ most recent interests, the system applies time-decay functions to long historical user interaction data.
To meet the unique requirements of each use case, we developed two distinct technical approaches. On Audible, we deployed a deep pairwise-learning-to-rank (DeepPLTR) model. The DeepPLTR model considers pairs of books and learns to assign a higher score to the one that better matches the customer query.
The DeepPLTR model’s architecture consists of three specialized towers. The left tower factors in contextual features and recent search patterns using a long-short-term-memory model, which processes data sequentially and considers its prior decisions when issuing a new term in the sequence. The middle tower handles keyword and item engagement history. The right tower factors in customer taste preferences and product descriptions to enable personalization. The model learns from paired examples, but at runtime, it relies on books’ absolute scores to assemble a ranked list.
For Amazon, we implemented a two-stage modeling approach involving a probabilistic information-retrieval model to determine the book title that best matches each keyword and a second model that personalizes the book format (audiobooks, e-books, and physical books). This dual-strategy approach maintains low latency while still enabling personalization.
In practice, a customer who types “dungeon craw” in the search bar now sees a visual recommendation for the book Dungeon Crawler Carl, complete with book cover, reducing friction by bypassing a search results page and sending the customer directly to the product detail page. On Audible, the system also personalizes autocomplete results and enriches the discovery experience with relevant connections. These include links to the author’s complete works (Matt Dinniman’s author page) and, for titles that belong to a series, links to the full collection (such as the Dungeon Crawler Carl series).
On Amazon, when the customer clicks on the title, the model personalizes the right book-format (audiobooks, e-books, physical books) recommendation and directs the customer to the right product detail page.
In both cases, after the customer has entered a certain number of keystrokes, the system employs a model to detect customer intent (e.g., book title intent for Amazon or author intent for Audible) and determine which visual widget should be displayed.
Audible and Amazon books’ visual autocomplete provides customers with more relevant content more rapidly than traditional autocomplete, and its direct navigation reduces the number of steps to find and access desired books — all while handling millions of queries at low latency.
This technology is not just about making book discovery easier; it is laying the foundation for future improvements in search personalization and visual discovery across Amazon’s ecosystem.
Acknowledgements: Jiun Kim, Sumit Khetan, Armen Stepanyan, Jack Xuan, Nathan Brothers, Eddie Chen, Vincent Lee, Soumy Ladha, Justine Luo, Yuchen Zeng, David Torres, Gali Deutsch, Chaitra Ramdas, Christopher Gomez, Sharmila Tamby, Melissa Ma, Cheng Luo, Jeffrey Jiang, Pavel Fedorov, Ronald Denaux, Aishwarya Vasanth, Azad Bajaj, Mary Heer, Adam Lowe, Jenny Wang, Cameron Cramer, Emmanuel Ankrah, Lydia Diaz, Suzette Islam, Fei Gu, Phil Weaver, Huan Xue, Kimmy Dai, Evangeline Yang, Chao Zhu, Anvy Tran, Jessica Wu, Xiaoxiong Huang, Jiushan Yang
Events & Conferences
Revolutionizing warehouse automation with scientific simulation

Modern warehouses rely on complex networks of sensors to enable safe and efficient operations. These sensors must detect everything from packages and containers to robots and vehicles, often in changing environments with varying lighting conditions. More important for Amazon, we need to be able to detect barcodes in an efficient way.
The Amazon Robotics ID (ARID) team focuses on solving this problem. When we first started working on it, we faced a significant bottleneck: optimizing sensor placement required weeks or months of physical prototyping and real-world testing, severely limiting our ability to explore innovative solutions.
To transform this process, we developed Sensor Workbench (SWB), a sensor simulation platform built on NVIDIA’s Isaac Sim that combines parallel processing, physics-based sensor modeling, and high-fidelity 3-D environments. By providing virtual testing environments that mirror real-world conditions with unprecedented accuracy, SWB allows our teams to explore hundreds of configurations in the same amount of time it previously took to test just a few physical setups.
Camera and target selection/positioning
Sensor Workbench users can select different cameras and targets and position them in 3-D space to receive real-time feedback on barcode decodability.
Three key innovations enabled SWB: a specialized parallel-computing architecture that performs simulation tasks across the GPU; a custom CAD-to-OpenUSD (Universal Scene Description) pipeline; and the use of OpenUSD as the ground truth throughout the simulation process.
Parallel-computing architecture
Our parallel-processing pipeline leverages NVIDIA’s Warp library with custom computation kernels to maximize GPU utilization. By maintaining 3-D objects persistently in GPU memory and updating transforms only when objects move, we eliminate redundant data transfers. We also perform computations only when needed — when, for instance, a sensor parameter changes, or something moves. By these means, we achieve real-time performance.
Visualization methods
Sensor Workbench users can pick sphere- or plane-based visualizations, to see how the positions and rotations of individual barcodes affect performance.
This architecture allows us to perform complex calculations for multiple sensors simultaneously, enabling instant feedback in the form of immersive 3-D visuals. Those visuals represent metrics that barcode-detection machine-learning models need to work, as teams adjust sensor positions and parameters in the environment.
CAD to USD
Our second innovation involved developing a custom CAD-to-OpenUSD pipeline that automatically converts detailed warehouse models into optimized 3-D assets. Our CAD-to-USD conversion pipeline replicates the structure and content of models created in the modeling program SolidWorks with a 1:1 mapping. We start by extracting essential data — including world transforms, mesh geometry, material properties, and joint information — from the CAD file. The full assembly-and-part hierarchy is preserved so that the resulting USD stage mirrors the CAD tree structure exactly.
To ensure modularity and maintainability, we organize the data into separate USD layers covering mesh, materials, joints, and transforms. This layered approach ensures that the converted USD file faithfully retains the asset structure, geometry, and visual fidelity of the original CAD model, enabling accurate and scalable integration for real-time visualization, simulation, and collaboration.
OpenUSD as ground truth
The third important factor was our novel approach to using OpenUSD as the ground truth throughout the entire simulation process. We developed custom schemas that extend beyond basic 3-D-asset information to include enriched environment descriptions and simulation parameters. Our system continuously records all scene activities — from sensor positions and orientations to object movements and parameter changes — directly into the USD stage in real time. We even maintain user interface elements and their states within USD, enabling us to restore not just the simulation configuration but the complete user interface state as well.
This architecture ensures that when USD initial configurations change, the simulation automatically adapts without requiring modifications to the core software. By maintaining this live synchronization between the simulation state and the USD representation, we create a reliable source of truth that captures the complete state of the simulation environment, allowing users to save and re-create simulation configurations exactly as needed. The interfaces simply reflect the state of the world, creating a flexible and maintainable system that can evolve with our needs.
Application
With SWB, our teams can now rapidly evaluate sensor mounting positions and verify overall concepts in a fraction of the time previously required. More importantly, SWB has become a powerful platform for cross-functional collaboration, allowing engineers, scientists, and operational teams to work together in real time, visualizing and adjusting sensor configurations while immediately seeing the impact of their changes and sharing their results with each other.
New perspectives
In projection mode, an explicit target is not needed. Instead, Sensor Workbench uses the whole environment as a target, projecting rays from the camera to identify locations for barcode placement. Users can also switch between a comprehensive three-quarters view and the perspectives of individual cameras.
Due to the initial success in simulating barcode-reading scenarios, we have expanded SWB’s capabilities to incorporate high-fidelity lighting simulations. This allows teams to iterate on new baffle and light designs, further optimizing the conditions for reliable barcode detection, while ensuring that lighting conditions are safe for human eyes, too. Teams can now explore various lighting conditions, target positions, and sensor configurations simultaneously, gleaning insights that would take months to accumulate through traditional testing methods.
Looking ahead, we are working on several exciting enhancements to the system. Our current focus is on integrating more-advanced sensor simulations that combine analytical models with real-world measurement feedback from the ARID team, further increasing the system’s accuracy and practical utility. We are also exploring the use of AI to suggest optimal sensor placements for new station designs, which could potentially identify novel configurations that users of the tool might not consider.
Additionally, we are looking to expand the system to serve as a comprehensive synthetic-data generation platform. This will go beyond just simulating barcode-detection scenarios, providing a full digital environment for testing sensors and algorithms. This capability will let teams validate and train their systems using diverse, automatically generated datasets that capture the full range of conditions they might encounter in real-world operations.
By combining advanced scientific computing with practical industrial applications, SWB represents a significant step forward in warehouse automation development. The platform demonstrates how sophisticated simulation tools can dramatically accelerate innovation in complex industrial systems. As we continue to enhance the system with new capabilities, we are excited about its potential to further transform and set new standards for warehouse automation.
-
Business1 week ago
The Guardian view on Trump and the Fed: independence is no substitute for accountability | Editorial
-
Tools & Platforms4 weeks ago
Building Trust in Military AI Starts with Opening the Black Box – War on the Rocks
-
Ethics & Policy1 month ago
SDAIA Supports Saudi Arabia’s Leadership in Shaping Global AI Ethics, Policy, and Research – وكالة الأنباء السعودية
-
Events & Conferences4 months ago
Journey to 1000 models: Scaling Instagram’s recommendation system
-
Jobs & Careers2 months ago
Mumbai-based Perplexity Alternative Has 60k+ Users Without Funding
-
Education2 months ago
VEX Robotics launches AI-powered classroom robotics system
-
Podcasts & Talks2 months ago
Happy 4th of July! 🎆 Made with Veo 3 in Gemini
-
Funding & Business2 months ago
Kayak and Expedia race to build AI travel agents that turn social posts into itineraries
-
Education2 months ago
Macron says UK and France have duty to tackle illegal migration ‘with humanity, solidarity and firmness’ – UK politics live | Politics
-
Podcasts & Talks2 months ago
OpenAI 🤝 @teamganassi