AI Research
Quantum machine learning (QML) is closer than you think: Why business leaders should start paying attention now

The enterprise technology landscape is witnessing a remarkable shift. While most discussions around quantum computing focus on distant breakthroughs and theoretical applications, a quiet revolution is happening at the intersection of quantum systems and machine learning. Quantum machine learning (QML) is transitioning from academic curiosity to a practical business tool, and the timeline for enterprise adoption may be shorter than many anticipate.
The quantum advantage: Beyond classical limitations
To truly appreciate how QML is evolving, and how those changes might end up having a huge impact on business technology, it is important to first understand how it differs from current forms of computing. Traditional computers process information in binary states, using ones and zeros. Quantum computers, however, operate on quantum bits (qubits) that can exist in multiple states simultaneously through a phenomenon called superposition. This fundamental difference enables quantum systems to process complex, interdependent variables at scales and speeds that classical machines simply cannot match.
While current quantum hardware still faces significant limitations — including error rates, decoherence, and the need for extreme cooling — consistent progress in quantum simulation and optimization is confirming the technology’s transformative potential. The key insight is that quantum systems don’t need to be perfect to be useful; they need to be better than classical alternatives for specific problem sets.
Why QML matters: Unlocking new performance frontiers
The rapid growth of AI has played a key role in unlocking the potential of QML because it has created a foundation for the technology to be integrated into existing models. QML represents a hybrid approach that combines quantum circuits with classical machine learning models to unlock performance improvements in targeted, data-intensive domains. This isn’t about replacing classical AI wholesale; it’s about identifying specific use cases where quantum advantages can be leveraged within existing enterprise AI workflows.
Early-stage experimentation across industries is already demonstrating measurable improvements:
- Accelerated training: Complex models that typically require extensive computational resources can be trained more efficiently using quantum-enhanced algorithms, reducing both time-to-insight and energy consumption.
- High-dimensional data handling: Quantum systems excel at processing datasets with many variables and sparse data points, scenarios where classical methods often struggle or require significant preprocessing.
- Enhanced accuracy with limited data: QML can achieve greater model accuracy with smaller sample sizes, particularly valuable in regulated industries or specialized domains where data is scarce or expensive to obtain.
The timeline is shortening: From theory to practice
One of the most compelling aspects of QML is how well its inherently probabilistic nature aligns with modern generative AI and uncertainty modeling. Just as classical computing advanced despite early hardware imperfections, current-generation quantum systems are producing measurable results in narrow but high-value use cases.
The progression mirrors the early days of cloud computing or AI: initial skepticism gave way to pilot projects, which demonstrated clear value in specific applications, ultimately leading to widespread enterprise adoption. Today’s quantum systems may be imperfect, but they’re becoming increasingly consistent in delivering advantages for well-defined problem sets.
What enterprises can do today: Practical entry points
Organizations don’t need to wait for quantum hardware perfection to begin exploring value. Several practical entry points offer immediate opportunities for experimentation and learning:
- Risk scenario simulation: Financial services and insurance companies can use quantum systems to simulate rare or complex risk scenarios that are computationally intensive for classical systems. This includes stress testing portfolios under extreme market conditions or modeling catastrophic insurance events.
- Enhanced forecasting: Quantum-inspired sampling techniques can improve forecasting accuracy and sensitivity analysis, particularly for supply chain optimization, demand planning, and resource allocation.
- Synthetic data generation: In heavily regulated industries or data-scarce environments, QML can generate high-quality synthetic datasets that preserve statistical properties while ensuring compliance with privacy regulations.
- Anomaly detection: Quantum systems excel at identifying subtle patterns and anomalies in complex datasets, particularly valuable for fraud detection, cybersecurity, and quality control applications.
- Specialized industry applications: Early adopters are finding success in claims forecasting, patient risk stratification, drug efficacy modeling, and portfolio optimization — areas where the quantum advantage directly translates to business value.
Building quantum readiness: Strategic considerations
For enterprise leaders considering QML adoption, the focus should be on building organizational readiness rather than waiting for perfect technology. This means investing in quantum literacy across technical teams, identifying use cases where quantum advantages align with business priorities, and developing partnerships with quantum computing providers and research institutions.
The talent dimension is particularly critical. Organizations that begin developing quantum expertise today will have significant advantages as the ecosystem matures, whether they pursue projects by training existing data scientists or recruiting quantum-aware talent. This isn’t just about understanding quantum mechanics; it’s about recognizing how quantum capabilities can be integrated into existing AI and data science workflows.
The enterprise imperative: Early movers’ advantage
QML is no longer confined to research laboratories. It’s becoming a tool with real strategic potential, offering competitive advantages for organizations willing to invest in early-stage experimentation. The companies that begin building quantum capabilities today — starting with awareness, progressing to experimentation, and developing internal expertise — will be best positioned to capitalize on the technology as it continues to mature.
The question isn’t whether QML will impact enterprise AI, but rather when and how. Organizations that treat quantum computing as a distant future technology risk being left behind by competitors who recognize its emerging practical value. The time for quantum awareness and preparation is now.
As we’ve learned from previous technology transitions, the companies that lead aren’t always those with the most resources; they’re the ones that recognize inflection points earliest and act decisively. For QML, that inflection point is approaching faster than most expect.
Learn more about EXL’s data and AI capabilities here.
Anand “Andy” Logani is executive vice president and chief digital and AI officer at EXL, a global data and AI company.
AI Research
And Sci Fi Thought AI Was Going To… Take Over? – mindmatters.ai
AI Research
Measuring Machine Intelligence Using Turing Test 2.0

In 1950, British mathematician Alan Turing (1912–1954) proposed a simple way to test artificial intelligence. His idea, known as the Turing Test, was to see if a computer could carry on a text-based conversation so well that a human judge could not reliably tell it apart from another human. If the computer could “fool” the judge, Turing argued, it should be considered intelligent.
For decades, Turing’s test shaped public understanding of AI. Yet as technology has advanced, many researchers have asked whether imitating human conversation really proves intelligence — or whether it only shows that machines can mimic certain human behaviors. Large language models like ChatGPT can already hold convincing conversations. But does that mean they understand what they are saying?
In a Mind Matters podcast interview, Dr. Georgios Mappouras tells host Robert J. Marks that the answer is no. In a recent paper, The General Intelligence Threshold, Mappouras introduces what he calls Turing Test 2.0. This updated approach sets a higher bar for intelligence than simply chatting like a human. It asks whether machines can go beyond imitation to produce new knowledge.
From information to knowledge
At the heart of Mappouras’s proposal is a distinction between two kinds of information, non-functional vs. functional:
- Non-functional information is raw data or observations that don’t lead to new insights by themselves. One example would be noticing that an apple falls from a tree.
- Functional information is knowledge that can be applied to achieve something new. When Isaac Newton connected the falling apple to the force of gravity, he transformed ordinary observation into scientific law.
True intelligence, Mappouras argues, is the ability to transform non-functional information into functional knowledge. This creative leap is what allows humans to build skyscrapers, develop medicine, and travel to the moon. A machine that merely rearranges words or retrieves facts cannot be said to have reached the same level.
The General Intelligence Threshold
Mappouras calls this standard the General Intelligence Threshold. His threshold sets a simple challenge: given existing knowledge and raw information, can the system generate new insights that were not directly programmed into it?
This threshold does not require constant displays of brilliance. Even one undeniable breakthrough — a “flash of genius” — would be enough to demonstrate that a machine possesses general intelligence. Just as a person may excel in math but not physics, a machine would only need to show creativity once to prove its potential.
Creativity and open problems
One way to apply the new test is through unsolved problems in mathematics. Throughout history, breakthroughs such as Andrew Wiles’s proof of Fermat’s Last Theorem or Grigori Perelman’s solution to the Poincaré Conjecture marked milestones of human creativity. If AI could solve open problems like the Riemann Hypothesis or the Collatz Conjecture — problems that no one has ever solved before — it would be strong evidence that the system had crossed the threshold into true intelligence.
Large language models already solve equations and perform advanced calculations, but solving a centuries-old unsolved problem would show something far deeper: the ability to create knowledge that has never existed before.
Beyond symbol manipulation
Mappouras also draws on philosopher John Searle’s famous “Chinese Room” thought experiment. In the scenario, a person who does not understand Chinese sits in a room with a rulebook for manipulating Chinese characters. By following instructions, the person produces outputs that convince outsiders he understands the language, even though he does not.
This scenario, Searle argued, shows that a computer might appear intelligent without real understanding. Mappouras agrees but goes further. For him, real intelligence is proven not just by producing outputs, but by acting on new knowledge. If the instructions in the Chinese Room included a way to escape, the person could only succeed if he truly understood what the words meant. In the same way, AI must demonstrate it can act meaningfully on information, not just shuffle symbols.
Can AI pass the new test?
So far, Mappouras does not think modern AI has passed the General Intelligence Threshold. Systems like ChatGPT may look impressive, but their apparent creativity usually comes from patterns in the massive data sets on which they were trained. They have not shown the ability to produce new, independent knowledge disconnected from prior inputs.
That said, Mappouras emphasizes that success would not require constant novelty. One true act of creativity — an undeniable demonstration of new knowledge — would be enough. Until that happens, he remains cautious about claims that today’s AI is truly intelligent.
A shift in the debate
The debate over artificial intelligence is shifting. The original Turing Test asked whether machines could fool us into thinking they were human. Turing Test 2.0 asks a harder question: can they discover something new?
Mappouras believes this is the real measure of intelligence. Intelligence is not imitation — it is innovation. Whether machines will ever cross that line remains uncertain. But if they do, the world will not just be talking with computers. We will be learning from them.
Final thoughts: Today’s systems, tomorrow’s threshold
Models like ChatGPT and Grok are remarkable at conversation, summarization, and problem-solving within known domains, but their strengths still reflect pattern learning from vast training data. By Mappouras’s standard, they will cross the General Intelligence Threshold only when they produce a verifiable breakthrough — an insight not traceable to prior text or human scaffolding, such as an original solution to a major open problem. Until then, they remain powerful imitators and accelerators of human work — impressive, useful, and transformative, but not yet creators of genuinely new knowledge.
Additional Resources
AI Research
UTM Celebrates Malaysia’s Youngest AI Researcher Recognised at IEEE AI-SI 2025 – UTM NewsHub

KUALA LUMPUR, 28 August 2025 – Universiti Teknologi Malaysia (UTM) proudly hosted the Institute of Electrical and Electronics Engineers (IEEE) International Conference on Artificial Intelligence for Sustainable Innovation (AI-SI) 2025, themed “Empowering Innovation for a Sustainable Future.” The conference gathered global experts, academics, and industry leaders to explore how Artificial Intelligence (AI) can address sustainability challenges. Among its highlights was the remarkable achievement of 17-year-old Malaysian researcher, Charanarravindaa Suriess, who was celebrated as the youngest presenter and awarded Best Presenter for his groundbreaking paper on adversarial robustness in neural networks. His recognition reflected not only individual brilliance but also Malaysia’s growing strength in the global AI research landscape.
Charanarravindaa’s presentation, titled “Two-Phase Evolutionary Framework for Adversarial Robustness in Neural Networks,” introduced an innovative framework designed to improve AI systems’ ability to defend against adversarial attacks. His contribution addressed one of the most pressing challenges in AI, ensuring resilience and trustworthiness of machine learning models in real-world applications. Born in Johor Bahru, his journey into science and computing began early; by primary school, he was already troubleshooting computers and experimenting with small websites. At just 15 years old, he graduated early, motivated by a passion for deeper challenges. Participation in international hackathons, including DeepLearning Week at Nanyang Technological University (NTU) Singapore, strengthened his resolve and provided the encouragement that led to his first academic paper, now internationally recognised at IEEE AI-SI 2025.
Beyond academia, Charanarravindaa has also demonstrated entrepreneurial spirit by founding Cortexa, a startup dedicated to advancing AI robustness, architectures, and applied AI for scientific discovery. His long-term vision is to integrate artificial intelligence with quantum computing and theoretical physics to expand the boundaries of knowledge. This ambition is a testament to the potential of Malaysia’s youth in contributing to frontier technologies. His recognition at IEEE AI-SI 2025 reflects IEEE’s mission of advancing technology for humanity, where innovation is seen as a universal endeavour not limited by age. By honouring a young researcher, IEEE underscored its commitment to empowering future generations of scientists and innovators to shape technology for global good.

During the conference, the Faculty of Artificial Intelligence (FAI), UTM, represented by Associate Professor Dr. Noor Azurati Ahmad, extended an invitation to Charanarravindaa to explore possible research collaborations. This initiative aligns with FAI’s vision to be a leader in AI education, research, and innovation, with a particular focus on trustworthy, robust, and sustainable AI. Early discussions centred on aligning his research interests with UTM’s expertise in advanced architectures and digital sustainability. Such collaboration exemplifies how institutions and young talent can come together to accelerate innovation, while also strengthening Malaysia’s position as an emerging hub for AI research and talent cultivation.
At the national level, this achievement resonates strongly with the Malaysia National Artificial Intelligence Roadmap (2021–2025), which identifies talent development as a central pillar in building an AI-ready nation. Prime Minister Datuk Seri Anwar Ibrahim has repeatedly highlighted the urgency of nurturing local talent to enhance competitiveness and leadership in the global digital economy. Charanarravindaa’s success demonstrates tangible progress in this direction, showcasing how Malaysia can produce young innovators capable of contributing to both national aspirations and international scientific advancement. Through platforms such as IEEE AI-SI 2025, UTM reaffirms its role as a catalyst for excellence in AI research and talent development, embodying its mission to prepare the next generation of scholars and innovators who will drive sustainable futures.
-
Business2 weeks ago
The Guardian view on Trump and the Fed: independence is no substitute for accountability | Editorial
-
Tools & Platforms1 month ago
Building Trust in Military AI Starts with Opening the Black Box – War on the Rocks
-
Ethics & Policy2 months ago
SDAIA Supports Saudi Arabia’s Leadership in Shaping Global AI Ethics, Policy, and Research – وكالة الأنباء السعودية
-
Events & Conferences4 months ago
Journey to 1000 models: Scaling Instagram’s recommendation system
-
Jobs & Careers3 months ago
Mumbai-based Perplexity Alternative Has 60k+ Users Without Funding
-
Podcasts & Talks2 months ago
Happy 4th of July! 🎆 Made with Veo 3 in Gemini
-
Education2 months ago
VEX Robotics launches AI-powered classroom robotics system
-
Education2 months ago
Macron says UK and France have duty to tackle illegal migration ‘with humanity, solidarity and firmness’ – UK politics live | Politics
-
Podcasts & Talks2 months ago
OpenAI 🤝 @teamganassi
-
Funding & Business3 months ago
Kayak and Expedia race to build AI travel agents that turn social posts into itineraries