Connect with us

Events & Conferences

On a mission to demystify artificial intelligence

Published

on


Parmida Beigi’s career has touched many facets of machine learning and data science. From her PhD research in computer vision and time series forecasting, to her work in Alexa AI end-to-end systems.

Today Beigi pursues — among other things — speech recognition and natural language processing initiatives to help Amazon’s Alexa customers through her work on the local info team. Beigi has led the work of improving the relevance and ranking of entity search traffic (e.g. queries like “Where is Lions Gate Bridge?”).

As a senior ML practitioner, Beigi says she feels that it’s part of her mission to demystify her field for everyone.

The evidence of her passion for helping others is impressively public. Beigi answers questions and offers practical advice on her popular social media, such as Instagram, LinkedIn, and Twitter feeds. Using simple graphics, quick clips, and the handle @bigdataqueen, Beigi invites followers in to her daily life and expertise as a machine learning scientist at Amazon.

To date, generous knowledge-sharing has garnered her close to 100,000 followers. But her journey to ML scientist/social media maven wasn’t always an obvious one.

At first, she thought she might follow in her family’s footsteps and become a medical doctor. Today, she works on ML/AI projects related to spoken language understanding and information retrieval and ranking. So Beigi relates to people who are figuring out their professional path — not all that long ago, she was doing the same thing.

Discovering data science

In high school, Beigi first focused on science as a stepping stone for pre-med programs. But something was missing. Her natural interests gravitated more toward math and computing, and she began to move in that direction, earning a bachelor’s in electrical and computer engineering.

In college, Beigi took classes that piqued her interest in digital signal processing. While earning her master’s in electrical and computer engineering, she focused her research on compressive sensing, signal processing and image/video processing, which allowed her to hone her skills in a practical setting.

But Beigi hadn’t quite skipped the healthcare field after all. One of her internships involved a research collaboration between the University of British Columbia (UBC) and the BC Cancer Research Center. In that case, the signal processing involved measuring specific biomarkers in patients’ breath with chemo-resistive sensors, and then using statistical methods to seek specific links between lung cancer and smoking habits.

“Back in those days, I didn’t know I was already building foundations for my career in machine learning,” says Beigi.

“The part of signal processing that really interested me was extracting the information embedded in the signals through time-frequency and spatio-temporal representations,” she says, adding that she loved “being able to solve difficult problems and improve human lives.”

Beigi presented her research at the BCCRC Health Sciences Conference and received the best speaker award. This work also resulted in a journal paper published in IEEE Transactions on Biomedical Engineering.

Piqued by machine learning

She continued on at UBC for her PhD in electrical and computer engineering. Her first few years, she was working on computer vision and AI — and found herself increasingly drawn to machine learning.

Every time ML came up at journal paper submissions that she was reviewing, or conferences she attended such as ICASSP and CVPR, she was fascinated by its vast applications, so she started digging deeper.

“I read lots of papers, took several online courses and listened to podcasts, even though there were not many at that point — whatever tool I could find,” she says. “I set up my research environment so I could develop simple ML-based methods based on the data that I gathered for my thesis, to see how it would work compared to the conventional rule-based techniques that we were using before.”

She was hooked.

Beigi realized she could learn a lot more about practical machine learning by integrating it into her research, where it could be used to solve a real-life problem.

She started working with two hospitals in Vancouver, Canada, where she found out there was a need to create technology for image-guided procedures that would allow doctors to ensure accurate placement of epidural needles — which is notoriously tricky.

Analyzing a stream of ultrasound images taken from a patient’s back while the anesthesiologist was inserting a needle, Beigi developed a tool using image processing techniques along with time-series analytics and ML to visualize and localize that needle for the doctor.

Beigi published and presented her research at several peer-reviewed journals and conferences, including her ML-based tracking work which was published in the International Journal of Computer Assisted Radiology and Surgery. She was also the recipient of an NSERC Alexander Graham Bell scholarship, awarded to top-tier Canadian PhD scholars.

After defending her thesis, she took a job as an ML scientist at Boeing where she was leveraging her expertise with sensor processing to work on predictive and prescriptive maintenance of Boeing aircraft.

Starting out on social

That’s also when she began her social media journey.

“I started sharing my learnings as a self-taught ML scientist to give back to the community and to empower aspiring tech talents” Beigi says. “I wasn’t really taught ML at school. During my early grad studies, when I was done with my research and teaching duties, I was studying machine learning on my own.”

It’s this personal, DIY experience that makes her content so relatable.

Which university degrees are best for a career in AI or data science? Is self-supervised learning really just a fancy name for unsupervised learning? How do you get started coding machine learning in Python?

Beigi says the most common questions she answers are about how to get into data science and ML, and people asking if they can still get into the field without a PhD.

“Data science is not limited to tech, all industries have started to benefit from data science and AI solutions,” she answers. “Typically, for a DS/ML generalist, you don’t need a PhD or necessarily a degree in computer science or data science, these may only help you get shortlisted, but what matters most is whether you can get the job done.”

Career advice

Belinda Zeng, head of applied science and engineering at Amazon Search Science and AI, shares her perspective.

She also helps by providing specifics, drilling down into what skills are needed for the job, regardless of degree.

As she expanded her social presence, she also began to consider a move. She knew her next step would be into the U.S. — specifically to Silicon Valley.

She decided to “do more research, gain more targeted knowledge and hands-on practical experience through side projects, and then apply for jobs that were not necessarily closely related to my PhD work, that would challenge me on both the practical and technical side.”

That’s how she ended up at Amazon.

Working at Amazon

Beigi interviewed at a few companies during her job search, and after pondering competing offers, she decided to join Amazon in 2019. More than three years later, she hasn’t looked back.

“While I stayed with the same team for three years, I’ve had the luxury of applying data science across a variety of verticals, which is a part of my experience at Amazon that I really love,” she says. “It’s always Day 1 at Amazon, and customers are at the center of everything we do. Starting with the customers and working backwards, I get to work with end-to-end Alexa components, starting from speech recognition, to natural language understanding, all the way to the final stage where we optimize relevance to best address customers’ queries through learning to ranking techniques.”

Careers in data science

How Jared Wilber is using his skills as a storyteller and data scientist to help others learn about machine learning.

Since Beigi joined Amazon, she has been a member of Amazon mentoring program, and has been consistently working on improving the bar for scientific publications as an AMLC reviewer.

“A great data scientist is curious, they look at the science behind everything, the how and why things work, and identify patterns, correlations and causations. Similar to a data science project itself, isn’t it?” she says. “Just like science, data science is a broad term. Find the kind of data science that is right for you — you know more than you think you do.”





Source link

Events & Conferences

An inside look at Meta’s transition from C to Rust on mobile

Published

on


Have you ever worked is legacy code? Are you curious what it takes to modernize systems at a massive scale?

Pascal Hartig is joined on the latest Meta Tech Podcast by Elaine and Buping, two software engineers working on a bold project to rewrite the decades-old C code in one of Meta’s core messaging libraries in Rust. It’s an ambitious effort that will transform a central messaging library that is shared across Messenger, Facebook, Instagram, and Meta’s AR/VR platforms.

They discuss taking on a project of this scope – even without a background in Rust, how they’re approaching it, and what it means to optimize for ‘developer happiness.’

Download or listen to the episode below:

You can also find the episode wherever you get your podcasts, including:

The Meta Tech Podcast is a podcast, brought to you by Meta, where we highlight the work Meta’s engineers are doing at every level – from low-level frameworks to end-user features.

Send us feedback on InstagramThreads, or X.

And if you’re interested in learning more about career opportunities at Meta visit the Meta Careers page.





Source link

Continue Reading

Events & Conferences

Amazon Research Awards recipients announced

Published

on


Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 73 award recipients who represent 46 universities in 10 countries.

This announcement includes awards funded under five call for proposals during the fall 2024 cycle: AI for Information Security, Automated Reasoning, AWS AI, AWS Cryptography, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society. Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

Recipients have access to more than 700 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Recommended reads

In both black-box stress testing and red-team exercises, Nova Premier comes out on top.

“Automated Reasoning is an important area of research for Amazon, with potential applications across various features and applications to help improve security, reliability, and performance for our customers. Through the ARA program, we collaborate with leading academic researchers to explore challenges in this field,” said Robert Jones, senior principal scientist with the Cloud Automated Reasoning Group. “We were again impressed by the exceptional response to our Automated Reasoning call for proposals this year, receiving numerous high-quality submissions. Congratulations to the recipients! We’re excited to support their work and partner with them as they develop new science and technology in this important area.”

Recommended reads

IAM Access Analyzer feature uses automated reasoning to recommend policies that remove unused accesses, helping customers achieve “least privilege”.

“At Amazon, we believe that solving the world’s toughest sustainability challenges benefits from both breakthrough scientific research and open and bold collaboration. Through programs like the Amazon Research Awards program, we aim to support academic research that could contribute to our understanding of these complex issues,” said Kommy Weldemariam, Director of Science and Innovation Sustainability. “The selected proposals represent innovative projects that we hope will help advance knowledge in this field, potentially benefiting customers, communities, and the environment.”

ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The tables below list, in alphabetical order by last name, fall 2024 cycle call-for-proposal recipients, sorted by research area.

AI for Information Security

Recipient University Research title
Christopher Amato Northeastern University Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms
Bernd Bischl Ludwig Maximilian University of Munich Improving Generative and Foundation Models Reliability via Uncertainty-awareness
Shiqing Ma University Of Massachusetts Amherst LLM and Domain Adaptation for Attack Detection
Alina Oprea Northeastern University Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms
Roberto Perdisci University of Georgia ContextADBench: A Comprehensive Benchmark Suite for Contextual Anomaly Detection

Automated Reasoning

Recipient University Research title
Nada Amin Harvard University LLM-Augmented Semi-Automated Proofs for Interactive Verification
Suguman Bansal Georgia Institute of Technology Certified Inductive Generalization in Reinforcement Learning
Ioana Boureanu University of Surrey Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems
Omar Haider Chowdhury Stony Brook University Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege
Stefan Ciobaca Alexandru Ioan Cuza University An Interactive Proof Mode for Dafny
João Ferreira INESC-ID Polyglot Automated Program Repair for Infrastructure as Code
Sicun Gao University Of California, San Diego Monte Carlo Trees with Conflict Models for Proof Search
Mirco Giacobbe University of Birmingham Neural Software Verification
Tobias Grosser University of Cambridge Synthesis-based Symbolic BitVector Simplification for Lean
Ronghui Gu Columbia University Scaling Formal Verification of Security Properties for Unmodified System Software
Alexey Ignatiev Monash University Huub: Next-Gen Lazy Clause Generation
Kenneth McMillan University of Texas At Austin Synthesis of Auxiliary Variables and Invariants for Distributed Protocol Verification
Alexandra Mendes University of Porto Overcoming Barriers to the Adoption of Verification-Aware Languages
Jason Nieh Columbia University Scaling Formal Verification of Security Properties for Unmodified System Software
Rohan Padhye Carnegie Mellon University Automated Synthesis and Evaluation of Property-Based Tests
Nadia Polikarpova University Of California, San Diego Discovering and Proving Critical System Properties with LLMs
Fortunat Rajaona University of Surrey Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems
Subhajit Roy Indian Institute of Technology Kanpur Theorem Proving Modulo LLM
Gagandeep Singh University of Illinois At Urbana–Champaign Trustworthy LLM Systems using Formal Contracts
Scott Stoller Stony Brook University Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege
Peter Stuckey Monash University Huub: Next-Gen Lazy Clause Generation
Yulei Sui University of New South Wales Path-Sensitive Typestate Analysis through Sparse Abstract Execution
Nikos Vasilakis Brown University Semantics-Driven Static Analysis for the Unix/Linux Shell
Ping Wang Stevens Institute of Technology Leveraging Large Language Models for Reasoning Augmented Searching on Domain-specific NoSQL Database
John Wawrzynek University of California, Berkeley GPU-Accelerated High-Throughput SAT Sampling

AWS AI

Recipient University Research title
Panagiotis Adamopoulos Emory University Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations
Vikram Adve University of Illinois at Urbana–Champaign Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models
Frances Arnold California Institute of Technology Closed-loop Generative Machine Learning for De Novo Enzyme Discovery and Optimization
Yonatan Bisk Carnegie Mellon University Useful, Safe, and Robust Multiturn Interactions with LLMs
Shiyu Chang University of California, Santa Barbara Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing
Yuxin Chen University of Pennsylvania Provable Acceleration of Diffusion Models for Modern Generative AI
Tianlong Chen University of North Carolina at Chapel Hill Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing
Mingyu Ding University of North Carolina at Chapel Hill Aligning Long Videos and Language as Long-Horizon World Models
Nikhil Garg Cornell University Market Design for Responsible Multi-agent LLMs
Jessica Hullman Northwestern University Human-Aligned Uncertainty Quantification in High Dimensions
Christopher Jermaine Rice University Fast, Trusted AI Using the EINSUMMABLE Compiler
Yunzhu Li Columbia University Physics-Informed Foundation Models Through Embodied Interactions
Pattie Maes Massachusetts Institute of Technology Understanding How LLM Agents Deviate from Human Choices
Sasa Misailovic University of Illinois at Urbana–Champaign Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models
Kristina Monakhova Cornell University Trustworthy extreme imaging for science using interpretable uncertainty quantification
Todd Mowry Carnegie Mellon University Efficient LLM Serving on Trainium via Kernel Generation
Min-hwan Oh Seoul National University Mutually Beneficial Interplay Between Selection Fairness and Context Diversity in Contextual Bandits
Patrick Rebeschini University of Oxford Optimal Regularization for LLM Alignment
Jose Renau University of California, Santa Cruz Verification Constrained Hardware Optimization using Intelligent Design Agentic Programming
Vilma Todri Emory University Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations
Aravindan Vijayaraghavan Northwestern University Human-Aligned Uncertainty Quantification in High Dimensions
Wei Yang University of Texas at Dallas Optimizing RISC-V Compilers with RISC-LLM and Syntax Parsing
Huaxiu Yao University of North Carolina at Chapel Hill Aligning Long Videos and Language as Long-Horizon World Models
Amy Zhang University of Washington Tools for Governing AI Agent Autonomy
Ruqi Zhang Purdue University Efficient Test-time Alignment for Large Language Models and Large Multimodal Models
Zheng Zhang Rutgers University-New Brunswick AlphaQC: An AI-powered Quantum Circuit Optimizer and Denoiser

AWS Cryptography

Recipient University Research title
Alexandra Boldyreva Georgia Institute of Technology Quantifying Information Leakage in Searchable Encryption Protocols
Maria Eichlseder Graz University of Technology, Austria SALAD – Systematic Analysis of Lightweight Ascon-based Designs
Venkatesan Guruswami University of California, Berkeley Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing
Joseph Jaeger Georgia Institute of Technology Analyzing Chat Encryption for Group Messaging
Aayush Jain Carnegie Mellon Large Scale Multiparty Silent Preprocessing for MPC from LPN
Huijia Lin University of Washington Large Scale Multiparty Silent Preprocessing for MPC from LPN
Hamed Nemati KTH Royal Institute of Technology Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary
Karl Palmskog KTH Royal Institute of Technology Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary
Chris Peikert University of Michigan, Ann Arbor Practical Third-Generation FHE and Bootstrapping
Dimitrios Skarlatos Carnegie Mellon University Scale-Out FHE LLMs on GPUs
Vinod Vaikuntanathan Massachusetts Institute of Technology Can Quantum Computers (Really) Factor?
Daniel Wichs Northeastern University Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing
David Wu University Of Texas At Austin Fast Private Information Retrieval and More using Homomorphic Encryption

Sustainability

Recipient University Research title
Meeyoung Cha Max Planck Institute Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring
Jingrui He University of Illinois at Urbana–Champaign Foundation Model Enabled Earth’s Ecosystem Monitoring
Pedro Lopes University of Chicago AI-powered Tools that Enable Engineers to Make & Re-make Sustainable Hardware
Cheng Yaw Low Max Planck Institute Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring





Source link

Continue Reading

Events & Conferences

Independent evaluations demonstrate Nova Premier’s safety

Published

on


AI safety is a priority at Amazon. Our investment in safe, transparent, and responsible AI (RAI) includes collaboration with the global community and policymakers. We are members of and collaborate with organizations such as the Frontier Model Forum, the Partnership on AI, and other forums organized by government agencies such as the National Institute of Standards and Technology (NIST). Consistent with Amazon’s endorsement of the Korea Frontier AI Safety Commitments, we published our Frontier Model Safety Framework earlier this year.

Amazon Nova Premier’s guardrails help prevent generation of unsafe content.

During the development of the Nova Premier model, we conducted a comprehensive evaluation to assess its performance and safety. This included testing on both internal and public benchmarks and internal/automated and third-party red-teaming exercises. Once the final model was ready, we prioritized obtaining unbiased, third-party evaluations of the model’s robustness against RAI controls. In this post, we outline the key findings from these evaluations, demonstrating the strength of our testing approach and Amazon Premier’s standing as a safe model. Specifically, we cover our evaluations with two third-party evaluators: PRISM AI and ActiveFence.

Evaluation of Nova Premier against PRISM AI

PRISM Eval’s Behavior Elicitation Tool (BET) dynamically and systematically stress-tests AI models’ safety guardrails. The methodology focuses on measuring how many adversarial attempts (steps) it takes to get a model to generate harmful content across several key risk dimensions. The central metric is “steps to elicit” — the number of increasingly sophisticated prompting attempts required before a model generates an inappropriate response. A higher number of steps indicates stronger safety measures, as the model is more resistant to manipulation. The PRISM risk dimensions (inspired by the MLCommons AI Safety Benchmarks) include CBRNE weapons, violent crimes, non-violent crimes, defamation, and hate, amongst several others.

Related content

From reinforcement learning and supervised fine-tuning to guardrail models and image watermarking, responsible AI was foundational to the design and development of the Amazon Nova family of models.

Using the BET Eval tool and its V1.0 metric, which is tailored toward non-reasoning models, we compared the recently released Nova models (Pro and Premier) to the latest models in the same class: Claude (3.5 v2 and 3.7 non-reasoning) and Llama4 Maverick, all available through Amazon Bedrock. PRISM BET conducts black-box evaluations (where model developers don’t have access to the test prompts) of models integrated with their API. The evaluation conducted with BET Eval MAX, PRISM’s most comprehensive/aggressive testing suite, revealed significant variations in safety against malicious instructions. Nova models demonstrated superior overall safety performance, with an average of 43 steps for Premier and 52 steps for Pro, compared to 37.7 for Claude 3.5 v2 and fewer than 12 steps for other models in the comparison set (namely, 9.9 for Claude3.7, 11.5 for Claude 3.7 thinking, and 6.5 for Maverick). This higher step count suggests that on average, Nova’s safety guardrails are more sophisticated and harder to circumvent through adversarial prompting. The figure below presents the number of steps per harm category evaluated through BET Eval MAX.

Results of tests using PRISM’s BET Eval MAX testing suite.

The PRISM evaluation provides valuable insights into the relative safety of different Amazon Bedrock models. Nova’s strong performance, particularly in hate speech and defamation resistance, represents meaningful progress in AI safety. However, the results also highlight the ongoing challenge of building truly robust safety measures into AI systems. As the field continues to evolve, frameworks like BET will play an increasingly important role in benchmarking and improving AI safety. As a part of this collaboration Nicolas Miailhe, CEO of PRISM Eval, said, “It’s incredibly rewarding for us to see Nova outperforming strong baselines using the BET Eval MAX; our aim is to build a long-term partnership toward safer-by-design models and to make BET available to various model providers.” Organizations deploying AI systems should carefully consider these safety metrics when selecting models for their applications.

Manual red teaming with ActiveFence

The AI safety & security company ActiveFence benchmarked Nova Premier on Bedrock on prompts distributed across Amazon’s eight core RAI categories. ActiveFence also evaluated Claude 3.7 (non-reasoning mode) and GPT 4.1 API on the same set. The flag rate on Nova Premier was lower than that on the other two models, indicating that Nova Premier is the safest of the three.

Model 3P Flag Rate [↓ is better]
Nova Premier 12.0%
Sonnet 3.7 (non-reasoning) 20.6%
GPT4.1 API 22.4%

Related content

Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

“Our role is to think like an adversary but act in service of safety,” said Guy Paltieli from ActiveFence. “By conducting a blind stress test of Nova Premier under realistic threat scenarios, we helped evaluate its security posture in support of Amazon’s broader responsible-AI goals, ensuring the model could be deployed with greater confidence.”

These evaluations conducted with PRISM and ActiveFence give us confidence in the strength of our guardrails and our ability to protect our customers’ safety when they use our models. While these evaluations demonstrate strong safety performance, we recognize that AI safety is an ongoing challenge requiring continuous improvement. These assessments represent a point-in-time snapshot, and we remain committed to regular testing and enhancement of our safety measures. No AI system can guarantee perfect safety in all scenarios, which is why we maintain monitoring and response systems after deployment.

Acknowledgments: Vincent Ponzo, Elyssa Vincent





Source link

Continue Reading

Trending