Connect with us

Events & Conferences

New AWS tool recommends removal of unused permissions

Published

on


AWS Identity and Access Management (IAM) policies provide customers with fine-grained control over who has access to what resources in the Amazon Web Services (AWS) Cloud. This control helps customers enforce the principle of least privilege by granting only the permissions required to perform particular tasks. In practice, however, writing IAM policies that enforce least privilege requires customers to understand what permissions are necessary for their applications to function, which can become challenging when the scale of the applications grows.

To help customers understand what permissions are not necessary, we launched IAM Access Analyzer unused access findings at the 2023 re:Invent conference. IAM Access Analyzer analyzes your AWS accounts to identify unused access and creates a centralized dashboard to report its findings. The findings highlight unused roles and unused access keys and passwords for IAM users. For active IAM roles and users, the findings provide visibility into unused services and actions.

Related content

New IAM Access Analyzer feature uses automated reasoning to ensure that access policies written in the IAM policy language don’t grant unintended access.

To take this service a step further, in June 2024 we launched recommendations to refine unused permissions in Access Analyzer. This feature recommends a refinement of the customer’s original IAM policies that retains the policy structure while removing the unused permissions. The recommendations not only simplify removal of unused permissions but also help customers enact the principle of least privilege for fine-grained permissions.

In this post, we discuss how Access Analyzer policy recommendations suggest policy refinements based on unused permissions, which completes the circle from monitoring overly permissive policies to refining them.

Policy recommendation in practice

Let’s dive into an example to see how policy recommendation works. Suppose you have the following IAM policy attached to an IAM role named MyRole:

{
  "Version": "2012-10-17",
  "Statement": [
   {
      "Effect": "Allow",
      "Action": [
        "lambda:AddPermission",
        "lambda:GetFunctionConfiguration",
        "lambda:UpdateFunctionConfiguration",
        "lambda:UpdateFunctionCode",
        "lambda:CreateFunction",
        "lambda:DeleteFunction",
        "lambda:ListVersionsByFunction",
        "lambda:GetFunction",
        "lambda:Invoke*"
      ],
      "Resource": "arn:aws:lambda:us-east-1:123456789012:function:my-lambda"
   },
  {
    "Effect" : "Allow",
    "Action" : [
      "s3:Get*",
      "s3:List*"
    ],
    "Resource" : "*"
  }
 ]
}

The above policy has two policy statements:

  • The first statement allows actions on a function in AWS Lambda, an AWS offering that provides function execution as a service. The allowed actions are specified by listing individual actions as well as via the wildcard string lambda:Invoke*, which permits all actions starting with Invoke in AWS Lambda, such as lambda:InvokeFunction.
  • The second statement allows actions on any Amazon Simple Storage Service (S3) bucket. Actions are specified by two wildcard strings, which indicate that the statement allows actions starting with Get or List in Amazon S3.

Enabling Access Analyzer for unused finding will provide you with a list of findings, each of which details the action-level unused permissions for specific roles. For example, for the role with the above policy attached, if Access Analyzer finds any AWS Lambda or Amazon S3 actions that are allowed but not used, it will display them as unused permissions.

Related content

Amazon Web Services (AWS) is a cloud computing services provider that has made significant investments in applying formal methods to proving correctness of its internal systems and providing assurance of correctness to their end-users. In this paper, we focus on how we built abstractions and eliminated specifications to scale a verification engine for AWS access policies, Zelkova, to be usable by all AWS

The unused permissions define a list of actions that are allowed by the IAM policy but not used by the role. These actions are specific to a namespace, a set of resources that are clustered together and walled off from other namespaces, to improve security. Here is an example in Json format that shows unused permissions found for MyRole with the policy we attached earlier:

[
 {
    "serviceNamespace": "lambda",
    "actions": [
      "UpdateFunctionCode",
      "GetFunction",
      "ListVersionsByFunction",
      "UpdateFunctionConfiguration",
      "CreateFunction",
      "DeleteFunction",
      "GetFunctionConfiguration",
      "AddPermission"
    ]
  },
  {
    "serviceNamespace": "s3",
    "actions": [
        "GetBucketLocation",
        "GetBucketWebsite",
        "GetBucketPolicyStatus",
        "GetAccelerateConfiguration",
        "GetBucketPolicy",
        "GetBucketRequestPayment",
        "GetReplicationConfiguration",
        "GetBucketLogging",
        "GetBucketObjectLockConfiguration",
        "GetBucketNotification",
        "GetLifecycleConfiguration",
        "GetAnalyticsConfiguration",
        "GetBucketCORS",
        "GetInventoryConfiguration",
        "GetBucketPublicAccessBlock",
        "GetEncryptionConfiguration",
        "GetBucketAcl",
        "GetBucketVersioning",
        "GetBucketOwnershipControls",
        "GetBucketTagging",
        "GetIntelligentTieringConfiguration",
        "GetMetricsConfiguration"
    ]
  }
]

This example shows actions that are not used in AWS Lambda and Amazon S3 but are allowed by the policy we specified earlier.

Related content

Rungta had a promising career with NASA, but decided the stars aligned for her at Amazon.

How could you refine the original policy to remove the unused permissions and achieve least privilege? One option is manual analysis. You might imagine the following process:

  • Find the statements that allow unused permissions;
  • Remove individual actions from those statements by referencing unused permissions.

This process, however, can be error prone when dealing with large policies and long lists of unused permissions. Moreover, when there are wildcard strings in a policy, removing unused permissions from them requires careful investigation of which actions should replace the wildcard strings.

Policy recommendation does this refinement automatically for customers!

The policy below is one that Access Analyzer recommends after removing the unused actions from the policy above (the figure also shows the differences between the original and revised policies):

{
  "Version": "2012-10-17",
  "Statement" : [
   {
      "Effect" : "Allow",
      "Action" : [
-       "lambda:AddPermission",
-       "lambda:GetFunctionConfiguration",
-       "lambda:UpdateFunctionConfiguration",
-       "lambda:UpdateFunctionCode",
-       "lambda:CreateFunction",
-       "lambda:DeleteFunction",
-       "lambda:ListVersionsByFunction",
-       "lambda:GetFunction",
        "lambda:Invoke*"
      ],
      "Resource" : "arn:aws:lambda:us-east-1:123456789012:function:my-lambda"
    },
    {
     "Effect" : "Allow",
     "Action" : [
-      "s3:Get*",
+      "s3:GetAccess*",
+      "s3:GetAccountPublicAccessBlock",
+      "s3:GetDataAccess",
+      "s3:GetJobTagging",
+      "s3:GetMulti*",
+      "s3:GetObject*",
+      "s3:GetStorage*",
       "s3:List*"
     ],
     "Resource" : "*"
   }
  ]
}

Let’s take a look at what’s changed for each policy statement.

For the first statement, policy recommendation removes all individually listed actions (e.g., lambda:AddPermission), since they appear in unused permissions. Because none of the unused permissions starts with lambda:Invoke, the recommendation leaves lambda:Invoke* untouched.

For the second statement, let’s focus on what happens to the wildcard s3:Get*, which appears in the original policy. There are many actions that can start with s3:Get, but only some of them are shown in the unused permissions. Therefore, s3:Get* cannot just be removed from the policy. Instead, the recommended policy replaces s3:Get* with seven actions that can start with s3:Get but are not reported as unused.

Related content

Amazon scientists are on the cutting edge of using math-based logic to provide better network security, access management, and greater reliability.

Some of these actions (e.g., s3:GetJobTagging) are individual ones, whereas others contain wildcards (e.g., s3:GetAccess* and s3:GetObject*). One way to manually replace s3:Get* in the revised policy would be to list all the actions that start with s3:Get except for the unused ones. However, this would result in an unwieldy policy, given that there are more than 50 actions starting with s3:Get.

Instead, policy recommendation identifies ways to use wildcards to collapse multiple actions, outputting actions such as s3:GetAccess* or s3:GetMulti*. Thanks to these wildcards, the recommended policy is succinct but still permits all the actions starting with s3:Get that are not reported as unused.

How do we decide where to place a wildcard in the newly generated wildcard actions? In the next section, we will dive deep on how policy recommendation generalizes actions with wildcards to allow only those actions that do not appear in unused permissions.

A deep dive into how actions are generalized

Policy recommendation is guided by the mathematical principle of “least general generalization” — i.e., finding the least permissive modification of the recommended policy that still allows all the actions allowed by the original policy. This theorem-backed approach guarantees that the modified policy still allows all and only the permissions granted by the original policy that are not reported as unused.

To implement the least-general generalization for unused permissions, we construct a data structure known as a trie, which is a tree each of whose nodes extends a sequence of tokens corresponding to a path through the tree. In our case, the nodes represent prefixes shared among actions, with a special marker for actions reported in unused permissions. By traversing the trie, we find the shortest string of prefixes that does not contain unused actions.

The diagram below shows a simplified trie delineating actions that replace the S3 Get* wildcard from the original policy (we have omitted some actions for clarity):

A trie delineating actions that can replace the Get* wildcard in an IAM policy. Nodes containing unused actions are depicted in orange; the remaining nodes are in green.

At a high level, the trie represents prefixes that are shared by some of the possible actions starting with s3:Get. Its root node represents the prefix Get; child nodes of the root append their prefixes to Get. For example, the node named Multi represents all actions that start with GetMulti.

Related content

Automated reasoning and optimizations specific to CPU microarchitectures improve both performance and assurance of correct implementation.

We say that a node is safe (denoted in green in the diagram) if none of the unused actions start with the prefix corresponding to that node; otherwise, it is unsafe (denoted in orange). For example, the node s3:GetBucket is unsafe because the action s3:GetBucketPolicy is unused. Similarly, the node ss is safe since there are no unused permissions that start with GetAccess.

We want our final policies to contain wildcard actions that correspond only to safe nodes, and we want to include enough safe nodes to permit all used actions. We achieve this by selecting the nodes that correspond to the shortest safe prefixes—i.e., nodes that are themselves safe but whose parents are not. As a result, the recommended policy replaces s3:Get* with the shortest prefixes that do not contain unused permissions, such as s3:GetAccess*, s3:GetMulti* and s3:GetJobTagging.

Together, the shortest safe prefixes form a new policy that, while syntactically similar to the original policy, is the least-general generalization to result from removing the unused actions. In other words, we have not removed more actions than necessary.

You can find how to start using policy recommendation with unused access in Access Analyzer. To learn more about the theoretical foundations powering policy recommendation, be sure to check out our science paper.





Source link

Events & Conferences

A New Ranking Framework for Better Notification Quality on Instagram

Published

on


  • We’re sharing how Meta is applying machine learning (ML) and diversity algorithms to improve notification quality and user experience. 
  • We’ve introduced a diversity-aware notification ranking framework to reduce uniformity and deliver a more varied and engaging mix of notifications.
  • This new framework reduces the volume of notifications and drives higher engagement rates through more diverse outreach.

Notifications are one of the most powerful tools for bringing people back to Instagram and enhancing engagement. Whether it’s a friend liking your photo, another close friend posting a story, or a suggestion for a reel you might enjoy, notifications help surface moments that matter in real time.

Instagram leverages machine learning (ML) models to decide who should get a notification, when to send it, and what content to include. These models are trained to optimize for user positive engagement such as click-through-rate (CTR) – the probability of a user clicking a notification – as well as other metrics like time spent.

However, while engagement-optimized models are effective at driving interactions, there’s a risk that they might overprioritize the product types and authors someone has previously engaged with. This can lead to overexposure to the same creators or the same product types while overlooking other valuable and diverse experiences. 

This means people could miss out on content that would give them a more balanced, satisfying, and enriched experience. Over time, this can make notifications feel spammy and increase the likelihood that people will disable them altogether. 

The real challenge lies in finding the right balance: How can we introduce meaningful diversity into the notification experience without sacrificing the personalization and relevance people on Instagram have come to expect?

To tackle this, we’ve introduced a diversity-aware notification ranking framework that helps deliver more diverse, better curated, and less repetitive notifications. This framework has significantly reduced daily notification volume while improving CTR. It also introduces several benefits:

  • The extensibility of incorporating customized soft penalty (demotion) logic for each dimension, enabling more adaptive and sophisticated diversity strategies.
  • The flexibility of tuning demotion strength across dimensions like content, author, and product type via adjustable weights.
  • The integration of balancing personalization and diversity, ensuring notifications remain both relevant and varied.

The Risks of Notifications without Diversity

The issue of overexposure in notifications often shows up in two major ways:

Overexposure to the same author: People might receive notifications that are mostly about the same friend. For example, if someone often interacts with content from a particular friend, the system may continue surfacing notifications from that person alone – ignoring other friends they also engage with. This can feel repetitive and one-dimensional, reducing the overall value of notifications.

Overexposure to the same product surface: People might mostly receive notifications from the same product surface such as Stories, even when Feed or Reels could provide value. For example, someone may be interested in both reel and story notifications but has recently interacted more often with stories. Because the system heavily prioritizes past engagement, it sends only story notifications, overlooking the person’s broader interests. 

Introducing Instagram’s Diversity-Aware Notification Ranking Framework

Instagram’s diversity-aware notification ranking framework is designed to enhance the notification experience by balancing the predicted potential for user engagement with the need for content diversity. This framework introduces a diversity layer on top of the existing engagement ML models, applying multiplicative penalties to the candidate scores generated by these models, as figure1, below, shows.

The diversity layer evaluates each notification candidate’s similarity to recently sent notifications across multiple dimensions such as content, author, notification type, and product surface. It then applies carefully calibrated penalties—expressed as multiplicative demotion factors—to downrank candidates that are too similar or repetitive. The adjusted scores are used to re-rank the candidates, enabling the system to select notifications that maintain high engagement potential while introducing meaningful diversity. In the end, the quality bar selects the top-ranked candidate that passes both the ranking and diversity criteria.

Figure.1: Instagram’s diversity-aware ranking framework where the diversity layer sits on top of the existing modeling layer and penalizes notifications that are too similar to recently sent ones.

Mathematical Formulation 

Within the diversity layer, we apply a multiplicative demotion factor to the base relevance score of each candidate. Given a notification candidate 𝑐, we compute its final score as the product of its base ranking score and a diversity demotion multiplier:

\text{Score}(c) = R(c) \times D(c)

where R(c) represents the candidate’s base relevance score, and D(c) ∈ [0,1] is a penalty factor that reduces the score based on similarity to recently sent notifications. We define a set of semantic dimensions (e.g., author, product type) along which we want to promote diversity. For each dimension i, we compute a similarity signal pi(c) between candidate c and the set of historical notifications H, using a maximal marginal relevance (MMR) approach:

p_i(c) = \mathrm{max}_{h \in H}\mathrm{sim}_i(c, h)

where simi(·,·) is a predefined similarity function for dimension i. In our baseline implementation, pi(c) is binary: it equals 1 if the similarity exceeds a threshold 𝜏i and 0 otherwise. 

The final demotion multiplier is defined as: 

D(c) = \prod_{i=1}^{m} \left( 1 - w_i \cdot p_i(c) \right)

where each w∈ [0,1] controls the strength of demotion for its respective dimension. This formulation ensures that candidates similar to previously delivered notifications along one or more dimensions are proportionally down-weighted, reducing redundancy and promoting content variation. The use of a multiplicative penalty allows for flexible control across multiple dimensions, while still preserving high-relevance candidates.

The Future of Diversity-Aware Ranking

As we continue evolving our notification diversity-aware ranking system, a next step is to introduce more adaptive, dynamic demotion strategies. Instead of relying on static rules, we plan to make demotion strength responsive to notification volume and delivery timing. For example, as a user receives more notifications—especially of similar type or in rapid succession—the system progressively applies stronger penalties to new notification candidates, effectively mitigating overwhelming experiences caused by high notification volume or tightly spaced deliveries.

Longer term, we see an opportunity to bring large language models (LLMs) into the diversity pipeline. LLMs can help us go beyond surface-level rules by understanding semantic similarity between messages and rephrasing content in more varied, user-friendly ways. This would allow us to personalize notification experiences with richer language and improved relevance while maintaining diversity across topics, tone, and timing.





Source link

Continue Reading

Events & Conferences

Simplifying book discovery with ML-powered visual autocomplete suggestions

Published

on


Every day, millions of customers search for books in various formats (audiobooks, e-books, and physical books) across Amazon and Audible. Traditional keyword autocomplete suggestions, while helpful, usually require several steps before customers find their desired content. Audible took on the challenge of making book discovery more intuitive and personalized while reducing the number of steps to purchase.

We developed an instant visual autocomplete system that enhances the search experience across Amazon and Audible. As the user begins typing a query, our solution provides visual previews with book covers, enabling direct navigation to relevant landing pages instead of the search result page. It also delivers real-time personalized format recommendations and incorporates multiple searchable entities, such as book pages, author pages, and series pages.

Our system needed to understand user intent from just a few keystrokes and determine the most relevant books to display, all while maintaining low latency for millions of queries. Using historical search data, we match keystrokes to products, transforming partial inputs into meaningful search suggestions. To ensure quality, we implemented confidence-based filtering mechanisms, which are particularly important for distinguishing between general queries like “mystery” and specific title searches. To reflect customers’ most recent interests, the system applies time-decay functions to long historical user interaction data.

Related content

Assessing the absolute utility of query results, rather than just their relative utility, improves learning-to-rank models.

To meet the unique requirements of each use case, we developed two distinct technical approaches. On Audible, we deployed a deep pairwise-learning-to-rank (DeepPLTR) model. The DeepPLTR model considers pairs of books and learns to assign a higher score to the one that better matches the customer query.

The DeepPLTR model’s architecture consists of three specialized towers. The left tower factors in contextual features and recent search patterns using a long-short-term-memory model, which processes data sequentially and considers its prior decisions when issuing a new term in the sequence. The middle tower handles keyword and item engagement history. The right tower factors in customer taste preferences and product descriptions to enable personalization. The model learns from paired examples, but at runtime, it relies on books’ absolute scores to assemble a ranked list.

Training architecture of the DeepPLTR model, which takes in paired examples (green and pink blocks). At runtime, the model scores only a single candidate at a time.

For Amazon, we implemented a two-stage modeling approach involving a probabilistic information-retrieval model to determine the book title that best matches each keyword and a second model that personalizes the book format (audiobooks, e-books, and physical books). This dual-strategy approach maintains low latency while still enabling personalization.

In practice, a customer who types “dungeon craw” in the search bar now sees a visual recommendation for the book Dungeon Crawler Carl, complete with book cover, reducing friction by bypassing a search results page and sending the customer directly to the product detail page. On Audible, the system also personalizes autocomplete results and enriches the discovery experience with relevant connections. These include links to the author’s complete works (Matt Dinniman’s author page) and, for titles that belong to a series, links to the full collection (such as the Dungeon Crawler Carl series).

Related content

Using reinforcement learning improves candidate selection and ranking for search, ad platforms, and recommender systems.

On Amazon, when the customer clicks on the title, the model personalizes the right book-format (audiobooks, e-books, physical books) recommendation and directs the customer to the right product detail page.

In both cases, after the customer has entered a certain number of keystrokes, the system employs a model to detect customer intent (e.g., book title intent for Amazon or author intent for Audible) and determine which visual widget should be displayed.

Audible and Amazon books’ visual autocomplete provides customers with more relevant content more rapidly than traditional autocomplete, and its direct navigation reduces the number of steps to find and access desired books — all while handling millions of queries at low latency.

This technology is not just about making book discovery easier; it is laying the foundation for future improvements in search personalization and visual discovery across Amazon’s ecosystem.

Acknowledgements: Jiun Kim, Sumit Khetan, Armen Stepanyan, Jack Xuan, Nathan Brothers, Eddie Chen, Vincent Lee, Soumy Ladha, Justine Luo, Yuchen Zeng, David Torres, Gali Deutsch, Chaitra Ramdas, Christopher Gomez, Sharmila Tamby, Melissa Ma, Cheng Luo, Jeffrey Jiang, Pavel Fedorov, Ronald Denaux, Aishwarya Vasanth, Azad Bajaj, Mary Heer, Adam Lowe, Jenny Wang, Cameron Cramer, Emmanuel Ankrah, Lydia Diaz, Suzette Islam, Fei Gu, Phil Weaver, Huan Xue, Kimmy Dai, Evangeline Yang, Chao Zhu, Anvy Tran, Jessica Wu, Xiaoxiong Huang, Jiushan Yang





Source link

Continue Reading

Events & Conferences

Revolutionizing warehouse automation with scientific simulation

Published

on


Modern warehouses rely on complex networks of sensors to enable safe and efficient operations. These sensors must detect everything from packages and containers to robots and vehicles, often in changing environments with varying lighting conditions. More important for Amazon, we need to be able to detect barcodes in an efficient way.

Related content

Generative AI supports the creation, at scale, of complex, realistic driving scenarios that can be directed to specific locations and environments.

The Amazon Robotics ID (ARID) team focuses on solving this problem. When we first started working on it, we faced a significant bottleneck: optimizing sensor placement required weeks or months of physical prototyping and real-world testing, severely limiting our ability to explore innovative solutions.

To transform this process, we developed Sensor Workbench (SWB), a sensor simulation platform built on NVIDIA’s Isaac Sim that combines parallel processing, physics-based sensor modeling, and high-fidelity 3-D environments. By providing virtual testing environments that mirror real-world conditions with unprecedented accuracy, SWB allows our teams to explore hundreds of configurations in the same amount of time it previously took to test just a few physical setups.

Camera and target selection/positioning

Sensor Workbench users can select different cameras and targets and position them in 3-D space to receive real-time feedback on barcode decodability.

Three key innovations enabled SWB: a specialized parallel-computing architecture that performs simulation tasks across the GPU; a custom CAD-to-OpenUSD (Universal Scene Description) pipeline; and the use of OpenUSD as the ground truth throughout the simulation process.

Parallel-computing architecture

Our parallel-processing pipeline leverages NVIDIA’s Warp library with custom computation kernels to maximize GPU utilization. By maintaining 3-D objects persistently in GPU memory and updating transforms only when objects move, we eliminate redundant data transfers. We also perform computations only when needed — when, for instance, a sensor parameter changes, or something moves. By these means, we achieve real-time performance.

Visualization methods

Sensor Workbench users can pick sphere- or plane-based visualizations, to see how the positions and rotations of individual barcodes affect performance.

This architecture allows us to perform complex calculations for multiple sensors simultaneously, enabling instant feedback in the form of immersive 3-D visuals. Those visuals represent metrics that barcode-detection machine-learning models need to work, as teams adjust sensor positions and parameters in the environment.

CAD to USD

Our second innovation involved developing a custom CAD-to-OpenUSD pipeline that automatically converts detailed warehouse models into optimized 3-D assets. Our CAD-to-USD conversion pipeline replicates the structure and content of models created in the modeling program SolidWorks with a 1:1 mapping. We start by extracting essential data — including world transforms, mesh geometry, material properties, and joint information — from the CAD file. The full assembly-and-part hierarchy is preserved so that the resulting USD stage mirrors the CAD tree structure exactly.

Related content

Two Alexa AI papers present novel methodologies that use vision and language understanding to improve embodied task completion in simulated environments.

To ensure modularity and maintainability, we organize the data into separate USD layers covering mesh, materials, joints, and transforms. This layered approach ensures that the converted USD file faithfully retains the asset structure, geometry, and visual fidelity of the original CAD model, enabling accurate and scalable integration for real-time visualization, simulation, and collaboration.

OpenUSD as ground truth

The third important factor was our novel approach to using OpenUSD as the ground truth throughout the entire simulation process. We developed custom schemas that extend beyond basic 3-D-asset information to include enriched environment descriptions and simulation parameters. Our system continuously records all scene activities — from sensor positions and orientations to object movements and parameter changes — directly into the USD stage in real time. We even maintain user interface elements and their states within USD, enabling us to restore not just the simulation configuration but the complete user interface state as well.

This architecture ensures that when USD initial configurations change, the simulation automatically adapts without requiring modifications to the core software. By maintaining this live synchronization between the simulation state and the USD representation, we create a reliable source of truth that captures the complete state of the simulation environment, allowing users to save and re-create simulation configurations exactly as needed. The interfaces simply reflect the state of the world, creating a flexible and maintainable system that can evolve with our needs.

Application

With SWB, our teams can now rapidly evaluate sensor mounting positions and verify overall concepts in a fraction of the time previously required. More importantly, SWB has become a powerful platform for cross-functional collaboration, allowing engineers, scientists, and operational teams to work together in real time, visualizing and adjusting sensor configurations while immediately seeing the impact of their changes and sharing their results with each other.

New perspectives

In projection mode, an explicit target is not needed. Instead, Sensor Workbench uses the whole environment as a target, projecting rays from the camera to identify locations for barcode placement. Users can also switch between a comprehensive three-quarters view and the perspectives of individual cameras.

Due to the initial success in simulating barcode-reading scenarios, we have expanded SWB’s capabilities to incorporate high-fidelity lighting simulations. This allows teams to iterate on new baffle and light designs, further optimizing the conditions for reliable barcode detection, while ensuring that lighting conditions are safe for human eyes, too. Teams can now explore various lighting conditions, target positions, and sensor configurations simultaneously, gleaning insights that would take months to accumulate through traditional testing methods.

Related content

Amazon researchers draw inspiration from finite-volume methods and adapt neural operators to enforce conservation laws and boundary conditions in deep-learning models of physical systems.

Looking ahead, we are working on several exciting enhancements to the system. Our current focus is on integrating more-advanced sensor simulations that combine analytical models with real-world measurement feedback from the ARID team, further increasing the system’s accuracy and practical utility. We are also exploring the use of AI to suggest optimal sensor placements for new station designs, which could potentially identify novel configurations that users of the tool might not consider.

Additionally, we are looking to expand the system to serve as a comprehensive synthetic-data generation platform. This will go beyond just simulating barcode-detection scenarios, providing a full digital environment for testing sensors and algorithms. This capability will let teams validate and train their systems using diverse, automatically generated datasets that capture the full range of conditions they might encounter in real-world operations.

By combining advanced scientific computing with practical industrial applications, SWB represents a significant step forward in warehouse automation development. The platform demonstrates how sophisticated simulation tools can dramatically accelerate innovation in complex industrial systems. As we continue to enhance the system with new capabilities, we are excited about its potential to further transform and set new standards for warehouse automation.





Source link

Continue Reading

Trending