Events & Conferences
Meta’s Full-stack HHVM optimizations for GenAI
As Meta has launched new, innovative products leveraging generative AI (GenAI), we need to make sure the underlying infrastructure components evolve along with it. Applying infrastructure knowledge and optimizations have allowed us to adapt to changing product requirements, delivering a better product along the way. Ultimately, our infrastructure systems need to balance our need to ship high-quality experiences with a need to run systems sustainability.
Splitting GenAI inference traffic out into a dedicated WWW tenant, which allows specialized runtime and warm-up configuration, has enabled us to meet both of those goals while delivering a 30% improvement in latency.
Who we are
As the Web Foundation team, we operate Meta’s monolithic web tier, running Hack. The team is composed of cross-functional engineers who make sure the infrastructure behind the web tier is healthy and well designed. We jump into incident response, work on some of the most complex areas of the infrastructure, and help build whatever we need to keep the site happily up and running.
To accomplish this, we have established a series of best practices on being a “good citizen” of the shared tier. We need to ensure that all requests comply with these guidelines to prevent issues from spilling over and affecting other teams’ products. One core rule is the request runtime—limiting a request to 30 seconds of execution. This is a consequence of the HHVM (HipHop Virtual Machine) runtime—each request has a corresponding worker thread, of which there is a finite number. To ensure there are always threads available to serve incoming requests, we need to balance the resources available on each host with its expected throughput. If requests are taking too long, there will be fewer available threads to process new requests, leading to user-visible unavailability.
The changing landscape
Classically, webservers at Meta are optimized for serving front-end requests—rendering webpages and serving GraphQL queries. These requests’ latency is typically measured in hundreds of milliseconds to seconds (substantially below the 30-second limit), which enables hosts to process approximately 500 queries per second.
Additionally, a web server will spend about two-thirds of its time doing input/output (I/O), and the remaining third doing CPU work. This fact has influenced the design of the Hack language, which supports asyncio, a type of cooperative multi-tasking, and all the core libraries support these primitives to increase performance and decrease the amount of time the CPU is sitting idle, waiting for I/O.
GenAI products, especially LLMs, have a different set of requirements. These are driven by the core inference flow: The model responds with a stream of tokens that can take seconds or minutes to complete. A user may see this as a chatbot “typing” a response. This isn’t an effect to make our products seem friendlier; it’s the speed at which our models think! After a user submits a query to the model, we need to start streaming these responses back to the user as fast as possible. On top of that, the total latency of the request is now substantially longer (measured in seconds). These properties have two effects on the infrastructure—minimal overhead on the critical path before calling the LLM, and a long duration for the rest of the request, most of which is spent waiting on I/O. (See Figures 1 and 2 below).
A series of optimizations
This shift in requirements allowed Web Foundation to reexamine the rules of running the monolithic web tier. We then launched a dedicated web tenant (a standalone deployment of WWW) that allowed custom configuration, which we could better tune to the needs of the workload.
Request timeout
First, running on an isolated web tier allowed us to increase the runtime limit for GenAI requests. This is a straightforward change, but it allowed us to isolate the longer-running traffic to avoid adverse impacts on the rest of the production tier. This way, we can avoid requests timing out if inference takes longer than 30 seconds.
Thread-pool sizing
Running requests for longer means there is reduced availability of worker threads (which, remember, map 1:1 with processed requests). Since webservers have a finite amount of memory, we can divide the total memory available by the per-request memory limit to get a peak number of active requests; this in turn tells us how many requests we can execute simultaneously. We ended up running with approximately 1000 threads on GenAI hosts, as compared to a couple of hundred on normal webservers.
JIT cache and “jumpstart”
HHVM is a just-in-time (JIT) interpreted language, which means the first time a given function executes, the machine needs to compile it to lower-level machine code for execution. Additionally, a technique called Jump-Start allows a webserver to seed its JIT cache with outputs from a previously warmed server. By allowing GenAI hosts to use Jump-Start profiles from the main web tier, we are able to greatly speed up execution, even if the code overlap is not identical.
Request warm-up
HHVM also supports the execution of dummy requests at server startup, which we can execute, and then we can discard the results. The intent here is to warm non-code caches within the webserver. Configuration values and service discovery info are normally fetched inline the first time they are needed and then cached within the webserver. By fetching and caching this information in warm-up requests, we prevent our users from observing the latency of these initial fetches.
Shadow traffic
Finally, Meta heavily uses real-time configuration to control feature rollouts, which means that jumpstart profiles consumed at startup time might not cover all future code paths the server will execute. To maintain coverage in the steady state, we also added request shadowing, so we can ensure that gating changes are still covered in the JIT cache.
Events & Conferences
An inside look at Meta’s transition from C to Rust on mobile
Have you ever worked is legacy code? Are you curious what it takes to modernize systems at a massive scale?
Pascal Hartig is joined on the latest Meta Tech Podcast by Elaine and Buping, two software engineers working on a bold project to rewrite the decades-old C code in one of Meta’s core messaging libraries in Rust. It’s an ambitious effort that will transform a central messaging library that is shared across Messenger, Facebook, Instagram, and Meta’s AR/VR platforms.
They discuss taking on a project of this scope – even without a background in Rust, how they’re approaching it, and what it means to optimize for ‘developer happiness.’
Download or listen to the episode below:
You can also find the episode wherever you get your podcasts, including:
The Meta Tech Podcast is a podcast, brought to you by Meta, where we highlight the work Meta’s engineers are doing at every level – from low-level frameworks to end-user features.
Send us feedback on Instagram, Threads, or X.
And if you’re interested in learning more about career opportunities at Meta visit the Meta Careers page.
Events & Conferences
Amazon Research Awards recipients announced
Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 73 award recipients who represent 46 universities in 10 countries.
This announcement includes awards funded under five call for proposals during the fall 2024 cycle: AI for Information Security, Automated Reasoning, AWS AI, AWS Cryptography, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society. Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.
Recipients have access to more than 700 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.
“Automated Reasoning is an important area of research for Amazon, with potential applications across various features and applications to help improve security, reliability, and performance for our customers. Through the ARA program, we collaborate with leading academic researchers to explore challenges in this field,” said Robert Jones, senior principal scientist with the Cloud Automated Reasoning Group. “We were again impressed by the exceptional response to our Automated Reasoning call for proposals this year, receiving numerous high-quality submissions. Congratulations to the recipients! We’re excited to support their work and partner with them as they develop new science and technology in this important area.”
“At Amazon, we believe that solving the world’s toughest sustainability challenges benefits from both breakthrough scientific research and open and bold collaboration. Through programs like the Amazon Research Awards program, we aim to support academic research that could contribute to our understanding of these complex issues,” said Kommy Weldemariam, Director of Science and Innovation Sustainability. “The selected proposals represent innovative projects that we hope will help advance knowledge in this field, potentially benefiting customers, communities, and the environment.”
ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.
The tables below list, in alphabetical order by last name, fall 2024 cycle call-for-proposal recipients, sorted by research area.
AI for Information Security
Recipient | University | Research title |
Christopher Amato | Northeastern University | Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms |
Bernd Bischl | Ludwig Maximilian University of Munich | Improving Generative and Foundation Models Reliability via Uncertainty-awareness |
Shiqing Ma | University Of Massachusetts Amherst | LLM and Domain Adaptation for Attack Detection |
Alina Oprea | Northeastern University | Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms |
Roberto Perdisci | University of Georgia | ContextADBench: A Comprehensive Benchmark Suite for Contextual Anomaly Detection |
Automated Reasoning
Recipient | University | Research title |
Nada Amin | Harvard University | LLM-Augmented Semi-Automated Proofs for Interactive Verification |
Suguman Bansal | Georgia Institute of Technology | Certified Inductive Generalization in Reinforcement Learning |
Ioana Boureanu | University of Surrey | Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems |
Omar Haider Chowdhury | Stony Brook University | Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege |
Stefan Ciobaca | Alexandru Ioan Cuza University | An Interactive Proof Mode for Dafny |
João Ferreira | INESC-ID | Polyglot Automated Program Repair for Infrastructure as Code |
Sicun Gao | University Of California, San Diego | Monte Carlo Trees with Conflict Models for Proof Search |
Mirco Giacobbe | University of Birmingham | Neural Software Verification |
Tobias Grosser | University of Cambridge | Synthesis-based Symbolic BitVector Simplification for Lean |
Ronghui Gu | Columbia University | Scaling Formal Verification of Security Properties for Unmodified System Software |
Alexey Ignatiev | Monash University | Huub: Next-Gen Lazy Clause Generation |
Kenneth McMillan | University of Texas At Austin | Synthesis of Auxiliary Variables and Invariants for Distributed Protocol Verification |
Alexandra Mendes | University of Porto | Overcoming Barriers to the Adoption of Verification-Aware Languages |
Jason Nieh | Columbia University | Scaling Formal Verification of Security Properties for Unmodified System Software |
Rohan Padhye | Carnegie Mellon University | Automated Synthesis and Evaluation of Property-Based Tests |
Nadia Polikarpova | University Of California, San Diego | Discovering and Proving Critical System Properties with LLMs |
Fortunat Rajaona | University of Surrey | Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems |
Subhajit Roy | Indian Institute of Technology Kanpur | Theorem Proving Modulo LLM |
Gagandeep Singh | University of Illinois At Urbana–Champaign | Trustworthy LLM Systems using Formal Contracts |
Scott Stoller | Stony Brook University | Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege |
Peter Stuckey | Monash University | Huub: Next-Gen Lazy Clause Generation |
Yulei Sui | University of New South Wales | Path-Sensitive Typestate Analysis through Sparse Abstract Execution |
Nikos Vasilakis | Brown University | Semantics-Driven Static Analysis for the Unix/Linux Shell |
Ping Wang | Stevens Institute of Technology | Leveraging Large Language Models for Reasoning Augmented Searching on Domain-specific NoSQL Database |
John Wawrzynek | University of California, Berkeley | GPU-Accelerated High-Throughput SAT Sampling |
AWS AI
Recipient | University | Research title |
Panagiotis Adamopoulos | Emory University | Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations |
Vikram Adve | University of Illinois at Urbana–Champaign | Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models |
Frances Arnold | California Institute of Technology | Closed-loop Generative Machine Learning for De Novo Enzyme Discovery and Optimization |
Yonatan Bisk | Carnegie Mellon University | Useful, Safe, and Robust Multiturn Interactions with LLMs |
Shiyu Chang | University of California, Santa Barbara | Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing |
Yuxin Chen | University of Pennsylvania | Provable Acceleration of Diffusion Models for Modern Generative AI |
Tianlong Chen | University of North Carolina at Chapel Hill | Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing |
Mingyu Ding | University of North Carolina at Chapel Hill | Aligning Long Videos and Language as Long-Horizon World Models |
Nikhil Garg | Cornell University | Market Design for Responsible Multi-agent LLMs |
Jessica Hullman | Northwestern University | Human-Aligned Uncertainty Quantification in High Dimensions |
Christopher Jermaine | Rice University | Fast, Trusted AI Using the EINSUMMABLE Compiler |
Yunzhu Li | Columbia University | Physics-Informed Foundation Models Through Embodied Interactions |
Pattie Maes | Massachusetts Institute of Technology | Understanding How LLM Agents Deviate from Human Choices |
Sasa Misailovic | University of Illinois at Urbana–Champaign | Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models |
Kristina Monakhova | Cornell University | Trustworthy extreme imaging for science using interpretable uncertainty quantification |
Todd Mowry | Carnegie Mellon University | Efficient LLM Serving on Trainium via Kernel Generation |
Min-hwan Oh | Seoul National University | Mutually Beneficial Interplay Between Selection Fairness and Context Diversity in Contextual Bandits |
Patrick Rebeschini | University of Oxford | Optimal Regularization for LLM Alignment |
Jose Renau | University of California, Santa Cruz | Verification Constrained Hardware Optimization using Intelligent Design Agentic Programming |
Vilma Todri | Emory University | Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations |
Aravindan Vijayaraghavan | Northwestern University | Human-Aligned Uncertainty Quantification in High Dimensions |
Wei Yang | University of Texas at Dallas | Optimizing RISC-V Compilers with RISC-LLM and Syntax Parsing |
Huaxiu Yao | University of North Carolina at Chapel Hill | Aligning Long Videos and Language as Long-Horizon World Models |
Amy Zhang | University of Washington | Tools for Governing AI Agent Autonomy |
Ruqi Zhang | Purdue University | Efficient Test-time Alignment for Large Language Models and Large Multimodal Models |
Zheng Zhang | Rutgers University-New Brunswick | AlphaQC: An AI-powered Quantum Circuit Optimizer and Denoiser |
AWS Cryptography
Recipient | University | Research title |
Alexandra Boldyreva | Georgia Institute of Technology | Quantifying Information Leakage in Searchable Encryption Protocols |
Maria Eichlseder | Graz University of Technology, Austria | SALAD – Systematic Analysis of Lightweight Ascon-based Designs |
Venkatesan Guruswami | University of California, Berkeley | Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing |
Joseph Jaeger | Georgia Institute of Technology | Analyzing Chat Encryption for Group Messaging |
Aayush Jain | Carnegie Mellon | Large Scale Multiparty Silent Preprocessing for MPC from LPN |
Huijia Lin | University of Washington | Large Scale Multiparty Silent Preprocessing for MPC from LPN |
Hamed Nemati | KTH Royal Institute of Technology | Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary |
Karl Palmskog | KTH Royal Institute of Technology | Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary |
Chris Peikert | University of Michigan, Ann Arbor | Practical Third-Generation FHE and Bootstrapping |
Dimitrios Skarlatos | Carnegie Mellon University | Scale-Out FHE LLMs on GPUs |
Vinod Vaikuntanathan | Massachusetts Institute of Technology | Can Quantum Computers (Really) Factor? |
Daniel Wichs | Northeastern University | Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing |
David Wu | University Of Texas At Austin | Fast Private Information Retrieval and More using Homomorphic Encryption |
Sustainability
Recipient | University | Research title |
Meeyoung Cha | Max Planck Institute | Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring |
Jingrui He | University of Illinois at Urbana–Champaign | Foundation Model Enabled Earth’s Ecosystem Monitoring |
Pedro Lopes | University of Chicago | AI-powered Tools that Enable Engineers to Make & Re-make Sustainable Hardware |
Cheng Yaw Low | Max Planck Institute | Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring |
Events & Conferences
Independent evaluations demonstrate Nova Premier’s safety
AI safety is a priority at Amazon. Our investment in safe, transparent, and responsible AI (RAI) includes collaboration with the global community and policymakers. We are members of and collaborate with organizations such as the Frontier Model Forum, the Partnership on AI, and other forums organized by government agencies such as the National Institute of Standards and Technology (NIST). Consistent with Amazon’s endorsement of the Korea Frontier AI Safety Commitments, we published our Frontier Model Safety Framework earlier this year.
During the development of the Nova Premier model, we conducted a comprehensive evaluation to assess its performance and safety. This included testing on both internal and public benchmarks and internal/automated and third-party red-teaming exercises. Once the final model was ready, we prioritized obtaining unbiased, third-party evaluations of the model’s robustness against RAI controls. In this post, we outline the key findings from these evaluations, demonstrating the strength of our testing approach and Amazon Premier’s standing as a safe model. Specifically, we cover our evaluations with two third-party evaluators: PRISM AI and ActiveFence.
Evaluation of Nova Premier against PRISM AI
PRISM Eval’s Behavior Elicitation Tool (BET) dynamically and systematically stress-tests AI models’ safety guardrails. The methodology focuses on measuring how many adversarial attempts (steps) it takes to get a model to generate harmful content across several key risk dimensions. The central metric is “steps to elicit” — the number of increasingly sophisticated prompting attempts required before a model generates an inappropriate response. A higher number of steps indicates stronger safety measures, as the model is more resistant to manipulation. The PRISM risk dimensions (inspired by the MLCommons AI Safety Benchmarks) include CBRNE weapons, violent crimes, non-violent crimes, defamation, and hate, amongst several others.
Using the BET Eval tool and its V1.0 metric, which is tailored toward non-reasoning models, we compared the recently released Nova models (Pro and Premier) to the latest models in the same class: Claude (3.5 v2 and 3.7 non-reasoning) and Llama4 Maverick, all available through Amazon Bedrock. PRISM BET conducts black-box evaluations (where model developers don’t have access to the test prompts) of models integrated with their API. The evaluation conducted with BET Eval MAX, PRISM’s most comprehensive/aggressive testing suite, revealed significant variations in safety against malicious instructions. Nova models demonstrated superior overall safety performance, with an average of 43 steps for Premier and 52 steps for Pro, compared to 37.7 for Claude 3.5 v2 and fewer than 12 steps for other models in the comparison set (namely, 9.9 for Claude3.7, 11.5 for Claude 3.7 thinking, and 6.5 for Maverick). This higher step count suggests that on average, Nova’s safety guardrails are more sophisticated and harder to circumvent through adversarial prompting. The figure below presents the number of steps per harm category evaluated through BET Eval MAX.
The PRISM evaluation provides valuable insights into the relative safety of different Amazon Bedrock models. Nova’s strong performance, particularly in hate speech and defamation resistance, represents meaningful progress in AI safety. However, the results also highlight the ongoing challenge of building truly robust safety measures into AI systems. As the field continues to evolve, frameworks like BET will play an increasingly important role in benchmarking and improving AI safety. As a part of this collaboration Nicolas Miailhe, CEO of PRISM Eval, said, “It’s incredibly rewarding for us to see Nova outperforming strong baselines using the BET Eval MAX; our aim is to build a long-term partnership toward safer-by-design models and to make BET available to various model providers.” Organizations deploying AI systems should carefully consider these safety metrics when selecting models for their applications.
Manual red teaming with ActiveFence
The AI safety & security company ActiveFence benchmarked Nova Premier on Bedrock on prompts distributed across Amazon’s eight core RAI categories. ActiveFence also evaluated Claude 3.7 (non-reasoning mode) and GPT 4.1 API on the same set. The flag rate on Nova Premier was lower than that on the other two models, indicating that Nova Premier is the safest of the three.
Model | 3P Flag Rate [↓ is better] |
Nova Premier | 12.0% |
Sonnet 3.7 (non-reasoning) | 20.6% |
GPT4.1 API | 22.4% |
“Our role is to think like an adversary but act in service of safety,” said Guy Paltieli from ActiveFence. “By conducting a blind stress test of Nova Premier under realistic threat scenarios, we helped evaluate its security posture in support of Amazon’s broader responsible-AI goals, ensuring the model could be deployed with greater confidence.”
These evaluations conducted with PRISM and ActiveFence give us confidence in the strength of our guardrails and our ability to protect our customers’ safety when they use our models. While these evaluations demonstrate strong safety performance, we recognize that AI safety is an ongoing challenge requiring continuous improvement. These assessments represent a point-in-time snapshot, and we remain committed to regular testing and enhancement of our safety measures. No AI system can guarantee perfect safety in all scenarios, which is why we maintain monitoring and response systems after deployment.
Acknowledgments: Vincent Ponzo, Elyssa Vincent
-
Funding & Business6 days ago
Kayak and Expedia race to build AI travel agents that turn social posts into itineraries
-
Jobs & Careers6 days ago
Mumbai-based Perplexity Alternative Has 60k+ Users Without Funding
-
Mergers & Acquisitions6 days ago
Donald Trump suggests US government review subsidies to Elon Musk’s companies
-
Funding & Business6 days ago
Rethinking Venture Capital’s Talent Pipeline
-
Jobs & Careers6 days ago
Why Agentic AI Isn’t Pure Hype (And What Skeptics Aren’t Seeing Yet)
-
Funding & Business3 days ago
Sakana AI’s TreeQuest: Deploy multi-model teams that outperform individual LLMs by 30%
-
Funding & Business6 days ago
From chatbots to collaborators: How AI agents are reshaping enterprise work
-
Jobs & Careers3 days ago
Ilya Sutskever Takes Over as CEO of Safe Superintelligence After Daniel Gross’s Exit
-
Funding & Business3 days ago
Dust hits $6M ARR helping enterprises build AI agents that actually do stuff instead of just talking
-
Jobs & Careers6 days ago
Telangana Launches TGDeX—India’s First State‑Led AI Public Infrastructure