Connect with us

AI Research

Inter-brain neural dynamics in biological and artificial intelligence systems

Published

on


  • Chen, P. & Hong, W. Neural circuit mechanisms of social behavior. Neuron 98, 16–30 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsbury, L. & Hong, W. A multi-brain framework for social interaction. Trends Neurosci. 43, 651–666 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czeszumski, A. et al. Hyperscanning: a valid method to study neural inter-brain underpinnings of social interaction. Front. Hum. Neurosci. 14, 39 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumas, G. & Fairhurst, M. T. Reciprocity and alignment: quantifying coupling in dynamic interactions. R. Soc. Open Sci. 8, 210138 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumas, G., Lachat, F., Martinerie, J., Nadel, J. & George, N. From social behaviour to brain synchronization: review and perspectives in hyperscanning. IRBM 32, 48–53 (2011).

    Article 

    Google Scholar
     

  • Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S. & Keysers, C. Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn. Sci. 16, 114–121 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinreich, S., Djalovski, A., Kraus, L., Louzoun, Y. & Feldman, R. Brain-to-brain synchrony during naturalistic social interactions. Sci. Rep. 7, 17060 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tseng, P.-H., Rajangam, S., Lehew, G., Lebedev, M. A. & Nicolelis, M. A. L. Interbrain cortical synchronization encodes multiple aspects of social interactions in monkey pairs. Sci. Rep. 8, 4699 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsbury, L. et al. Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178, 429–446 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. & Yartsev, M. M. Correlated neural activity across the brains of socially interacting bats. Cell 178, 413–428 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J. & Kurth-Nelson, Z. Deep reinforcement learning and its neuroscientific implications. Neuron 107, 603–616 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34, 26–38 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Busoniu, L., Babuska, R. & Schutter, B. D. A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. C 38, 156–172 (2008).

    Article 

    Google Scholar
     

  • Zhang, K., Yang, Z. & Başar, T. in Handbook of Reinforcement Learning and Control (eds Vamvoudakis, K. G. et al.) 321–384 (2021).

  • Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murugan, M. et al. Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171, 1663–1677 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheggia, D. et al. Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. Nat. Neurosci. 23, 47–60 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kingsbury, L. et al. Cortical representations of conspecific sex shape social behavior. Neuron 107, 941–953 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frost, N. A., Haggart, A. & Sohal, V. S. Dynamic patterns of correlated activity in the prefrontal cortex encode information about social behavior. PLoS Biol. 19, e3001235 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monte, O. D. et al. Widespread implementations of interactive social gaze neurons in the primate prefrontal-amygdala networks. Neuron 110, 2183–2197 (2022).

    Article 

    Google Scholar
     

  • Li, S. W. et al. Frontal neurons driving competitive behaviour and ecology of social groups. Nature 603, 661–666 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Padilla-Coreano, N., Tye, K. M. & Zelikowsky, M. Dynamic influences on the neural encoding of social valence. Nat. Rev. Neurosci. 23, 535–550 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merre, P. L., Ährlund-Richter, S. & Carlén, M. The mouse prefrontal cortex: unity in diversity. Neuron 109, 1925–1944 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Abdi, H. & Williams, L. J. Partial least squares methods: partial least squares correlation and partial least square regression. Methods Mol. Biol. 930, 549–579 (2012).

    Article 

    Google Scholar
     

  • Lopes-dos-Santos, V., Ribeiro, S. & Tort, A. B. L. Detecting cell assemblies in large neuronal populations. J Neurosci. Methods 220, 149–166 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal pose tracking. Nat. Methods 19, 486–495 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotelling, H. Relations between two sets of variates. Biometrika 28, 321 (1936).

    Article 

    Google Scholar
     

  • Liang, E. et al. RLlib: abstractions for distributed reinforcement learning. In Proc. 35th International Conference on Machine Learning 80, 3053–3062 (PMLR, 2018).

  • Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://doi.org/10.48550/arxiv.1707.06347 (2017).

  • Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260–292 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hattori, R., Kuchibhotla, K. V., Froemke, R. C. & Komiyama, T. Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat. Neurosci. 20, 1199–1208 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, L. & Dan, Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87, 437–450 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumas, G., Nadel, J., Soussignan, R., Martinerie, J. & Garnero, L. Inter-brain synchronization during social interaction. PLoS ONE 5, e12166 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barraza, P., Pérez, A. & Rodríguez, E. Brain-to-brain coupling in the gamma-band as a marker of shared intentionality. Front. Hum. Neurosci. 14, 295 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical areas interact through a communication subspace. Neuron 102, 249–259 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fakhar, K. & Hilgetag, C. C. Systematic perturbation of an artificial neural network: a step towards quantifying causal contributions in the brain. PLoS Comput. Biol. 18, e1010250 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cowley, B. R. et al. Mapping model units to visual neurons reveals population code for social behaviour. Nature 629, 1100–1108 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kao, J. C. Considerations in using recurrent neural networks to probe neural dynamics. J. Neurophysiol. 122, 2504–2521 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife 7, e28728 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M., Wu, Y. E., Jiang, M. & Hong, W. Cortical regulation of helping behaviour towards others in pain. Nature 626, 136–144 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. E. et al. Neural control of affiliative touch in prosocial interaction. Nature 599, 262–267 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhikari, R. & Agrawal, R. K. An Introductory Study on Time Series Modeling and Forecasting (Lambert Academic Publishing, 2013).

  • Sheintuch, L. et al. Tracking the same neurons across multiple days in Ca2+ imaging data. Cell Rep. 21, 1102–1115 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lerer, A. & Peysakhovich, A. Maintaining cooperation in complex social dilemmas using deep reinforcement learning. Preprint at https://doi.org/10.48550/arxiv.1707.01068 (2017).

  • Foerster, J. N. et al. Learning with opponent-learning awareness. In Proc. 17th International Conference on Autonomous Agents and MultiAgent Systems 122–130 (ACM, 2018).

  • Lu, C., Willi, T., de Witt, C. S. & Foerster, J. Model-free opponent shaping. In Proc. 39th International Conference on Machine Learning Vol. 162, 14398–14411 (PMLR, 2022).

  • Zhou, J. L., Hong, W. & Kao, J. C. Reciprocal reward influence encourages cooperation from self-interested agents. In Proc. 38th Conference on Neural Information Processing Systems 59491–59512 (Curran Associates, 2024).

  • Agapiou, J. P. et al. Melting Pot 2.0. Preprint at https://doi.org/10.48550/arxiv.2211.13746 (2022).

  • Espeholt, L. et al. IMPALA: scalable distributed deep-RL with importance weighted actor–learner architectures. In Proc. 35th International Conference on Machine Learning (PMLR, 2018).



  • Source link

    AI Research

    Gachon University establishes AI·Computing Research Institute – 조선일보

    Published

    on



    Gachon University establishes AI·Computing Research Institute  조선일보



    Source link

    Continue Reading

    AI Research

    Tech war: Tencent pushes adoption of Chinese AI chips as mainland cuts reliance on Nvidia

    Published

    on

    By


    The Shenzhen-based tech conglomerate’s cloud computing unit, Tencent Cloud, said it was supporting “mainstream domestic chips” in its AI computing infrastructure, without naming any Chinese integrated circuit brand.

    Tencent has “fully adapted to mainstream domestic chips” and “participates in the open-source community”, Tencent Cloud president Qiu Yuepeng said at the company’s annual Global Digital Ecosystem Summit on Tuesday.

    It is a commitment that reflects growing efforts in the country’s semiconductor industry and AI sector to push forward Beijing’s tech self-sufficiency agenda amid US export restrictions on China and rising geopolitical tensions.
    Tencent Cloud unveils support for Chinese-designed AI chips at the company’s annual Global Digital Ecosystem Summit. Photo: Weibo



    Source link

    Continue Reading

    AI Research

    Using AI for homework and social media bans in BBC survey results – BBC

    Published

    on



    Using AI for homework and social media bans in BBC survey results  BBC



    Source link

    Continue Reading

    Trending