Connect with us

AI Insights

How Artificial Intelligence has changed the way research is done

Published

on


Research was a time-consuming procedure in the early 1990s, when I was pursuing my M.Phil. in English lLiterature. Weeks and months were spent browsing library shelves, taking handwritten notes, and meticulously crafting arguments. Gathering even the most basic resources required time and perseverance. By the late 1990s, when I was doing my Ph.D., digital bibliographies replaced old card systems in libraries, cutting months of effort down to a few weeks.

Now that I am a research supervisor, I see a different world. Artificial intelligence (AI) programmes can summarise whole works — including novels, critical essays, and poetry collections — in seconds and provide immediate access to character analysis, theme overviews, and pertinent secondary sources. This technological breakthrough poses significant questions: Should research still take years in an era when foundational data is instantaneously available? Should we reconsider the objectives and structure of academic research?

What AI can do

Traditional research was deep and arduous. Reading ought to be in-depth and sustained. However, with AI, most of the mechanical work has been automated. For example, a scholar researching 21st-century responses to Hamlet can instruct an AI programme to provide a synopsis, psychological insights, and an overview of growing critique in minutes. My Ph.D. research on the Black Mountain Poets required me to travel across the U.S., consult archives and original manuscripts, and interact with scholars. As a Fulbright scholar, I had the privilege of visiting Black Mountain College and engaging with source material that had rarely been explored. AI can now scan and analyse such archives in seconds.

Consider a student studying a historical figure. Previously, gathering biographical details, appraising social achievements, and comprehending personal challenges required days or weeks. AI tools such as Google Lens and natural language processors can now compile and format such data instantly. Provide a clear prompt, and the necessary material will arrive, frequently with references and structure already in place. At a recent symposium on AI in education, an NIT professor stated that AI had saved him at least 15 years of academic labour. This statement encapsulates the massive transition we are witnessing.

In literary studies, it facilitates cross-textual analysis, aids in the identification of intertextual relationships, and quickly offers historical context. Summaries, translations, and bibliographies are widely available, allowing scholars to focus more on interpretation and synthesis. Previously, a PhD may last three-to-five years and focus on a particular topic, but scholars today can investigate many themes or collaborate across fields. The time saved from data collecting can now be used for higher-level thinking and creative analysis.

What AI can’t do

However, AI has its limitations. It cannot replace human intelligence, empathy, or interpretive nuance. Literary research is more than mere summary of content; it is also about dealing with ambiguity, comprehending historical and cultural contexts, and providing unique interpretations. These are essentially human tasks.

Overdependence on AI can lead to conceptual shortcuts. Students may avoid the hard effort of intensive reading and critical engagement, resulting in shallow understanding. AI may potentially misinterpret sophisticated analogies or overlook subtle themes, resulting in generalised responses that miss the essence of the issue. Authentic research thrives on depth, paradox, and a sustained intellectual engagement. If the process is rushed, we risk losing the richness of this academic pursuit.

Instead of resisting these developments, we must rethink research. Its core focus has always been generating new knowledge, developing new interpretations, and contributing meaningfully to academic discussions. The process of gathering information is just the beginning. The researcher’s function is transitioning from data collector to meaning maker. In this new world, critical thinking, imagination, and the willingness to question must be prioritised. Academic training must prepare students to use AI tools wisely, without letting them control the outcome.

Institutions too, must re-evaluate their traditional research models. Is the worth of a Ph.D. determined solely by its duration, or by the breadth and uniqueness of its contribution? Could shorter, more targeted undertakings facilitated by AI, be equally impactful?While AI has transformed research by making it faster, easier, and more collaborative, the fundamental component of scholarship remains unchanged. Critical thinking, intellectual rigour, and creative insight remain central and uniquely human. As a research supervisor, I feel that the key issue is not whether research should span years, but how we wisely use the time available. AI frees us from routine tasks, encouraging us to go further and think deeper. Thus, the actual purpose of contemporary research should not be to accomplish more, but to do it better.

The writer is Professor of English and Dean of Student Affairs, Sahrdaya College of Advanced Studies (Autonomous), Kodakara, Thrissur, Kerala.

Published – July 05, 2025 03:00 pm IST



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

AI Insights

Regulatory Policy and Practice on AI’s Frontier

Published

on


Adaptive, expert-led regulation can unlock the promise of artificial intelligence.

Technological breakthroughs, historically, have played a distinctive role in accelerating economic growth, expanding opportunity, and enhancing standards of living. Technology enables us to get more out of the knowledge we have and prior scientific discoveries, in addition to generating new insights that enable new inventions. Technology is associated with new jobs, higher incomes, greater wealth, better health, educational improvements, time-saving devices, and many other concrete gains that improve people’s day-to-day lives. The benefits of technology, however, are not evenly distributed, even when an economy is more productive and growing overall. When technology is disruptive, costs and dislocations are shouldered by some more than others, and periods of transition can be difficult.

Theory and experience teach that innovative technology does not automatically improve people’s station and situation merely by virtue of its development. The way technology is deployed and the degree to which gains are shared—in other words, turning technology’s promise into reality without overlooking valid concerns—depends, in meaningful part, on the policy, regulatory, and ethical decisions we make as a society.

Today, these decisions are front and center for artificial intelligence (AI).

AI’s capabilities are remarkable, with profound implications spanning health care, agriculture, financial services, manufacturing, education, energy, and beyond. The latest research is demonstrably pushing AI’s frontier, advancing AI-based reasoning and AI’s performance of complex multistep tasks, and bringing us closer to artificial general intelligence (high-level intelligence and reasoning that allows AI systems to autonomously perform highly complex tasks at or beyond human capacity in many diverse instances and settings). Advanced AI systems, such as AI agents (AI systems that autonomously complete tasks toward identified objectives), are leading to fundamentally new opportunities and ways of doing things, which can unsettle the status quo, possibly leading to major transformations.

In our view, AI should be embraced while preparing for the change it brings. This includes recognizing that the pace and magnitude of AI breakthroughs are faster and more impactful than anticipated. A terrific indication of AI’s promise is the 2024 Nobel Prize in chemistry, winners of which used AI to “crack the code” of protein structures, “life’s ingenious chemical tools.” At the same time, as AI becomes widely used, guardrails, governance, and oversight should manage risks, safeguard values, and look out for those disadvantaged by disruption.

Government can help fuel the beneficial development and deployment of AI in the United States by shaping a regulatory environment conducive to AI that fosters the adoption of goods, services, practices, processes, and tools leveraging AI, in addition to encouraging AI research.

It starts with a pro-innovation policy agenda. Once the goal of promoting AI is set, the game plan to achieve it must be architected and implemented. Operationalizing policy into concrete progress can be difficult and more challenging when new technology raises novel questions infused with subtleties.

Regulatory agencies that determine specific regulatory requirements and enforce compliance play a significant part in adapting and administering regulatory regimes that encourage rather than stifle technology. Pragmatic regulation compatible with AI is instrumental so that regulation is workable as applied to AI-led innovation, further unlocking AI’s potential. Regulators should be willing to allow businesses flexibility to deploy AI-centered uses that challenge traditional approaches and conventions. That said, regulators’ critical mission of detecting and preventing harmful behavior should not be cast aside. Properly calibrated governance, guardrails, and oversight that prudently handle misuse and misconduct can support technological advancement and adoption over time.

Regulators can achieve core regulatory objectives, including, among other things, consumer protection, investor protection, and health and safety, without being anchored to specific regulatory requirements if the requirements—fashioned when agentic and other advanced AI was not contemplated—are inapt in the context of current and emerging AI.

We are not implying that vital governmental interests that are foundational to many regulatory regimes should be jettisoned. Rather, it is about how those interests are best achieved as technology changes, perhaps dramatically. It is about regulating in a way that allows AI to reach its promise and ensuring that essential safeguards are in place to protect persons from wrongdoing, abuses, and harms that could frustrate AI’s real-world potential by undercutting trust in—and acceptance of—AI. It is about fostering a regulatory environment that allows for constructive AI-human collaboration—including using AI agents to help monitor other AI agents while humans remain actively involved addressing nuances, responding to an AI agent’s unanticipated performance, engaging matters of greatest agentic AI uncertainty, and resolving tough calls that people can uniquely evaluate given all that human judgment embodies.

This takes modernizing regulation—in its design, its detail, its application, and its clarity—to work, very practically, in the context of AI by accommodating AI’s capabilities.

Accomplishing this type of regulatory modernity is not easy. It benefits from combining technological expertise with regulatory expertise. When integrated, these dual perspectives assist regulatory agencies in determining how best to update regulatory frameworks and specific regulatory requirements to accommodate expected and unexpected uses of advanced AI. Even when underpinning regulatory goals do not change, certain decades-old—or newer—regulations may not fit with today’s technology, let alone future technological breakthroughs. In addition, regulatory updates may be justified in light of regulators’ own use of AI to improve regulatory processes and practices, such as using AI agents to streamline permitting, licensing, registration, and other types of approvals.

Regulatory agencies are filled with people who bring to bear valuable experience, knowledge, and skill concerning agency-specific regulatory domains, such as financial services, antitrust, food, pharmaceuticals, agriculture, land use, energy, the environment, and consumer products. That should not change.

But the commissions, boards, departments, and other agencies that regulate so much of the economy and day-to-day life—the administrative state—should have more technological expertise in-house relevant to AI. AI’s capabilities are materially increasing at a rapid clip, so staying on top of what AI can do and how it does it—including understanding leading AI system architecture and imagining how AI might be deployed as it advances toward its frontier—is difficult. Without question, there are individuals across government with impressive technological chops, and regulators have made commendable strides keeping apprised of technological innovation. Indeed, certain parts of government are inherently technology-focused. Many regulatory agencies are not, however; but even at those agencies, in-depth understanding of AI is increasingly important.

Regulatory agencies should bring on board more individuals with technology backgrounds from the private sector, academia, research institutions, think tanks, and elsewhere—including computer scientists, physicists, software engineers, AI researchers, cryptographers, and the like.

For example, we envision a regulatory agency’s lawyers working closely with its AI engineers to ensure that regulatory requirements contemplate and factor in AI. Lawyers with specific regulatory knowledge can prompt large language models to measure a model’s interpretation of legal and regulatory obligations. Doing this systematically and with a large enough sample size requires close collaboration with AI engineers to automate the analysis and benchmark a model’s results. AI engineers could partner with an agency’s regulatory experts in discerning the technological capabilities of frontier AI systems to comport with identified regulatory objectives in order to craft regulatory requirements that account for and accommodate the use of AI in consequential contexts. AI could accelerate various regulatory functions that typically have taken considerable time for regulators to perform because they have demanded significant human involvement. To illustrate, regulators could use AI agents to assist the review of permitting, licensing, and registration applications that individuals and businesses must obtain before engaging in certain activities, closing certain transactions, or marketing and selling certain products. Regulatory agencies could augment humans by using AI systems to conduct an initial assessment of applications and other requests against regulatory requirements.

The more regulatory agencies have the knowledge and experience of technologists in-house, the more understanding regulatory agencies will gain of cutting-edge AI. When that enriched technological insight is combined with the breadth of subject-matter expertise agencies already possess, regulatory agencies will be well-positioned to modernize regulation that fosters innovation while preserving fundamental safeguards. Sophisticated technological know-how can help guide regulators’ decisions concerning how best to revise specific regulatory features so that they are workable with AI and conducive to technological progress. The technical elements of regulation should be informed by the technical elements of AI to ensure practicable alignment between regulation and AI, allowing AI innovation to flourish without incurring undue risks.

With more in-house technological expertise, we think regulatory agencies will grow increasingly comfortable making the regulatory changes needed to accommodate, if not accelerate, the development and adoption of advanced AI.

There is more to technological progress that propels economic growth than technological capability in and of itself. An administrative state that is responsive to the capabilities of AI—including those on AI’s expanding frontier—could make a big difference converting AI’s promise into reality, continuing the history of technological breakthroughs that have improved people’s lives for centuries.

Troy A. Paredes



Source link

Continue Reading

AI Insights

In the ever-changing artificial intelligence (AI) world, there is a place that is gaining an unrival..

Published

on


In the ever-changing artificial intelligence (AI) world, there is a place that is gaining an unrivaled status as an AI-based language-specific service. DeepL started in Germany in 2017 and now has 200,000 companies around the world as customers.

DeepL Chief Revenue Officer David Parry Jones, whom Mail Business recently met via video, is in charge of all customer management and support.

DeepL is focusing on securing customers by introducing a large number of services tailored to their needs, such as launching “Deep L for Enterprise,” a corporate product, and “Deep L Voice,” a voice translation solution, last year.

“We are focusing on translators, which are key products, and DeepL Voice is gaining popularity as it is installed in the Teams environment,” Pari-Jones CRO said. “We are also considering installing it on Zoom, a video conference platform.”

DeepL’s voice translation solution is currently integrated into Microsoft’s Teams. If participants in the meeting using Teams speak their own language, other participants can check subtitles that are translated in real-time. As the global video conference market accounts for nearly 90% of Zoom and MS Teams, if DeepL solutions are introduced through Zoom, the language barrier in video conferences will now disappear.

DeepL solutions are all focused on saving time and resources going into translation and delivering accurate results. “According to a study commissioned by Forrester Research last year, companies’ internal document translation time was reduced by 90% when using DeepL solutions,” Parry Jones CRO said, explaining that it is playing a role in breaking down language barriers and strengthening efficiency.

The Asian market, including Korea, a non-English speaking country, is considered a key market for DeepL. CEO Yarek Kutilovsky also visits Korea almost every year and meets with domestic customers.

“The Asia-Pacific region and Japan are behind DeepL’s rapid growth,” said CRO Pari-Jones. In translation services, the region accounts for 45% of sales, he said. “In particular, Japan is the second largest market, and Korea is closely following it.” He explains that Korea and Japan have similar levels of English proficiency, and there are many large corporations that are active in multiple countries, so there is a high demand for high-quality translations.

In Japan, Daiwa Securities is using DeepL solutions in the process of disclosing performance-related data to the world, and Fujifilm and NEC are also representative customers of DeepL. In Korea, Yanolja, Lotte Innovate, and Lightning Market are using DeepL.

DeepL currently only has branches in Japan among Asian countries, and the Korean branch is also considering establishing it, although the exact timing has not been set.

“DeepL continues to improve translation quality and invest at the same time for growth in Korea,” said CRO Pari-Jones. “We need a local team for growth.” We can’t promise you the exact schedule, but (the Korean branch) will be a natural development,” he said.

Meanwhile, as Generative AI services such as ChatGPT become more common, these services are also not the main function, but they also perform compliance levels of translation, threatening translators.

DeepL also sees them as competitors and competes. “DeepL is a translation company, so the difference is that it strives to provide accuracy or innovative language services,” Pari-Jones CRO said. “When comparing translation quality, the gap has narrowed slightly with ChatGPT.” We will continue to improve quality while testing regularly,” he said.

[Reporter Jeong Hojun]



Source link

Continue Reading

AI Insights

There is No Such Thing as Artificial Intelligence – Nathan Beacom

Published

on


One man tried to kill a cop with a butcher knife, because OpenAI killed his lover. A 29-year-old mother became violent toward her husband when he suggested that her relationship with ChatGPT was not real. A 41-year-old now-single mom split with her husband after he became consumed with chatbot communication, developing bizarre paranoia and conspiracy theories.

These stories, reported by the New York Times and Rolling Stone, represent the frightening, far end of the spectrum of chatbot-induced madness. How many people, we might wonder, are quietly losing their minds because they’ve turned to chatbots as a salve for loneliness or frustrated romantic desire?



Source link

Continue Reading

Trending