Harnessing EHR data for health research | Nature Medicine. https://www.nature.com/articles/s41591-024-03074-8.
Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).
CAS
PubMed
Google Scholar
Adler-Milstein, J. et al. Meeting the Moment: Addressing Barriers and Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis. NAM Perspect. https://doi.org/10.31478/202209c. (2022)
Aquino, Y. S. J. et al. Utopia versus dystopia: Professional perspectives on the impact of healthcare artificial intelligence on clinical roles and skills. Int. J. Med. Inf. 169, 104903 (2023).
Google Scholar
Pavuluri, S., Sangal, R., Sather, J. & Taylor, R. A. Balancing act: the complex role of artificial intelligence in addressing burnout and healthcare workforce dynamics. BMJ Health Care Inf. 31, e101120 (2024).
Google Scholar
Rule, A. et al. Guidance for reporting analyses of metadata on electronic health record use. J. Am. Med. Inform. Assoc.31, 784–789 (2023).
PubMed Central
Google Scholar
Adler-Milstein, J., Adelman, J. S., Tai-Seale, M., Patel, V. L. & Dymek, C. EHR audit logs: A new goldmine for health services research?. J. Biomed. Inform. 101, 103343 (2020).
PubMed
Google Scholar
Kannampallil, T. & Adler-Milstein, J. Using electronic health record audit log data for research: insights from early efforts. J. Am. Med. Inform. Assoc. 30, 167–171 (2023).
Google Scholar
Rule, A., Melnick, E. R. & Apathy, N. C. Using event logs to observe interactions with electronic health records: an updated scoping review shows increasing use of vendor-derived measures. J. Am. Med. Inform. Assoc. 30, 144–154 (2023).
Google Scholar
Rule, A., Chiang, M. F. & Hribar, M. R. Using electronic health record audit logs to study clinical activity: a systematic review of aims, measures, and methods. J. Am. Med. Inform. Assoc.27, 480–490 (2020).
PubMed
Google Scholar
Physician time spent using the electronic health record during outpatient encounters: a descriptive study. Ann Intern. Med 172, No 3. https://www.acpjournals.org/doi/10.7326/M18-3684.
Rotenstein, L. S., Holmgren, A. J., Downing, N. L. & Bates, D. W. Differences in total and after-hours electronic health record time across ambulatory specialties. JAMA Intern. Med. 181, 863–865 (2021).
PubMed
PubMed Central
Google Scholar
Tai-Seale, M. et al. Association of physician burnout with perceived EHR work stress and potentially actionable factors. J. Am. Med. Inform. Assoc. 30, 1665–1672 (2023).
PubMed
PubMed Central
Google Scholar
Chen, Y. et al. Modeling care team structures in the neonatal intensive care unit through network analysis of EHR Audit Logs. Methods Inf. Med. 58, 109–123 (2019).
PubMed
Google Scholar
Yakusheva, O. et al. An electronic health record metadata-mining approach to identifying patient-level interprofessional clinician teams in the intensive care unit. J. Am. Med. Inform. Assoc. 32, 426–434 (2025).
PubMed
Google Scholar
Chen, Y., Patel, M. B., McNaughton, C. D. & Malin, B. A. Interaction patterns of trauma providers are associated with length of stay. J. Am. Med. Inform. Assoc.25, 790–799 (2018).
PubMed
PubMed Central
Google Scholar
Lou, S. S. et al. Effect of clinician attention switching on workload and wrong-patient errors. Br. J. Anaesth. 129, e22–e24 (2022).
PubMed
PubMed Central
Google Scholar
Rose, C. et al. Team is brain: leveraging EHR audit log data for new insights into acute care processes. J. Am. Med. Inform. Assoc. 30, 8–15 (2023).
Google Scholar
Melnick, E. R. et al. Analysis of electronic health record use and clinical productivity and their association with physician turnover. JAMA Netw. Open 4, e2128790 (2021).
PubMed
PubMed Central
Google Scholar
Tran, B., Lenhart, A., Ross, R. & Dorr, D. A. Burnout and EHR use among academic primary care physicians with varied clinical workloads. AMIA Summits Transl. Sci. Proc. 2019, 136–144 (2019).
PubMed
PubMed Central
Google Scholar
Rossetti, S. C. et al. Real-time surveillance system for patient deterioration: a pragmatic cluster-randomized controlled trial. Nat. Med. 1–8. https://doi.org/10.1038/s41591-025-03609-7. (2025)
Rossetti, S. C. et al. Healthcare process modeling to phenotype clinician behaviors for exploiting the signal gain of clinical expertise (HPM-ExpertSignals): Development and evaluation of a conceptual framework. J. Am. Med. Inform. Assoc.28, 1242–1251 (2021).
PubMed
PubMed Central
Google Scholar
Zhang, X., Yan, C., Malin, B. A., Patel, M. B. & Chen, Y. Predicting next-day discharge via electronic health record access logs. J. Am. Med. Inform. Assoc.28, 2670–2680 (2021).
PubMed
PubMed Central
Google Scholar
Bhaskhar, N., Ip, W., Chen, J. H. & Rubin, D. L. Clinical outcome prediction using observational supervision with electronic health records and audit logs. J. Biomed. Inform. 147, 104522 (2023).
PubMed
Google Scholar
Zhang, X. et al. Optimizing large language models for discharge prediction: best practices in leveraging electronic health record audit logs. AMIA Annu. Symp. Proc. 2024, 1323–1331 (2025).
Kim, S., Warner, B. C., Lew, D., Lou, S. S. & Kannampallil, T. Measuring cognitive effort using tabular transformer-based language models of electronic health record-based audit log action sequences. J. Am. Med. Inform. Assoc.31, 2228–2235 (2024).
PubMed
PubMed Central
Google Scholar
Rossetti, S. C. et al. Leveraging clinical expertise as a feature – not an outcome – of predictive models: evaluation of an early warning system use case. Amia. Annu. Symp. Proc. 2019, 323–332 (2020).
PubMed
PubMed Central
Google Scholar
Duggan, M. J. et al. Clinician experiences with ambient scribe technology to assist with documentation burden and efficiency. JAMA Netw. Open 8, e2460637 (2025).
PubMed
PubMed Central
Google Scholar
Garcia, P. et al. Artificial intelligence–generated draft replies to patient inbox messages. JAMA Netw. Open 7, e243201 (2024).
PubMed
PubMed Central
Google Scholar
Sinsky, C. A., Rotenstein, L., Holmgren, A. J. & Apathy, N. C. The number of patient scheduled hours resulting in a 40-hour work week by physician specialty and setting: a cross-sectional study using electronic health record event log data. J. Am. Med. Inform. Assoc. 32, 235–240 (2025).
PubMed
Google Scholar
Holmgren, A. J., Sinsky, C. A., Rotenstein, L. & Apathy, N. C. National comparison of ambulatory physician electronic health record use across specialties. J. Gen. Intern. Med. 39, 2868–2870 (2024).
PubMed
PubMed Central
Google Scholar
Rotenstein, L. et al. Virtual scribes and physician time spent on electronic health records. JAMA Netw. Open 7, e2413140 (2024).
PubMed
PubMed Central
Google Scholar
Rotenstein, L. S. et al. Association of primary care physicians’ Electronic Inbox activity patterns with patients’ likelihood to recommend the physician. J. Gen. Intern. Med. 39, 150–152 (2024).
PubMed
Google Scholar
Li, H. et al. Quantifying EHR and policy factors associated with the gender productivity gap in ambulatory, general internal medicine. J. Gen. Intern. Med. 39, 557–565 (2024).
PubMed
Google Scholar
Jay Holmgren, A., Steitz, B., Lou, S. & Apathy, N. Using Electronic Health Record Metadata to Understand Clinician Work and Behavior. In Reengineering Clinical Workflow in the Digital and AI Era: Toward Safer and More Efficient Care (eds. Zheng, K., Westbrook, J. & Patel, V. L.) 299–317 (Springer Nature Switzerland, Cham, https://doi.org/10.1007/978-3-031-82971-0_15. 2025).
Rotenstein, L. & Jay Holmgren, A. COVID exacerbated the gender disparity in physician electronic health record inbox burden. J. Am. Med. Inform. Assoc. 30, 1720–1724 (2023).
PubMed
PubMed Central
Google Scholar
Gupta, K. et al. Differences in ambulatory EHR use patterns for male vs. female physicians. Catal. Carryover 5, (2019).
Rotenstein, L. S. et al. System-level factors and time spent on electronic health records by primary care physicians. JAMA Netw. Open 6, e2344713 (2023).
PubMed
PubMed Central
Google Scholar
Holmgren, A. J., Thombley, R., Sinsky, C. A. & Adler-Milstein, J. Changes in physician electronic health record use with the expansion of telemedicine. JAMA Intern. Med. 183, 1357–1365 (2023).
PubMed
PubMed Central
Google Scholar
Tawfik, D. et al. Emerging domains for measuring health care delivery with electronic health record metadata. J. Med. Internet Res. 27, e64721 (2025).
PubMed
PubMed Central
Google Scholar
Yan, C. et al. Differences in health professionals’ engagement with electronic health records based on inpatient race and ethnicity. JAMA Netw. Open 6, e2336383 (2023).
PubMed
PubMed Central
Google Scholar
Cox, M. L. et al. Documenting or operating: where is time spent in general surgery residency?. J. Surg. Educ. 75, e97–e106 (2018).
PubMed
PubMed Central
Google Scholar
Read-Brown, S. et al. Time requirements for electronic health record use in an Academic Ophthalmology Center. JAMA Ophthalmol. 135, 1250–1257 (2017).
PubMed
PubMed Central
Google Scholar
Dziorny, A. C. et al. Automatic detection of front-line clinician hospital shifts: a novel use of electronic health record timestamp data. Appl. Clin. Inform. 10, 28–37 (2019).
PubMed
PubMed Central
Google Scholar
Hribar, M. R. et al. Secondary use of EHR timestamp data: validation and application for workflow optimization. Amia. Annu. Symp. Proc. 2015, 1909–1917 (2015).
PubMed Central
Google Scholar
Hribar, M. R. et al. Secondary use of electronic health record data for clinical workflow analysis. J. Am. Med. Inform. Assoc. JAMIA 25, 40–46 (2018).
PubMed
Google Scholar
Sinsky, C. A. et al. Metrics for assessing physician activity using electronic health record log data. J. Am. Med. Inform. Assoc. 27, 639–643 (2020).
PubMed
PubMed Central
Google Scholar
Avdagovska, M. et al. Exploring the impact of in basket metrics on the adoption of a new electronic health record system among specialists in a tertiary hospital in alberta: descriptive study. J. Med. Internet Res. 26, e53122 (2024).
PubMed
PubMed Central
Google Scholar
Akbar, F. et al. Physicians’ electronic inbox work patterns and factors associated with high inbox work duration. J. Am. Med. Inform. Assoc. 28, 923–930 (2021).
PubMed
Google Scholar
Arndt, B. G. et al. Tethered to the EHR: Primary care physician workload assessment using EHR event log data and time-motion observations. Ann. Fam. Med. 15, 419–426 (2017).
PubMed
PubMed Central
Google Scholar
Amroze, A. et al. Use of electronic health record access and audit logs to identify physician actions following noninterruptive alert opening: descriptive study. JMIR Med. Inform. 7, e12650 (2019).
PubMed
PubMed Central
Google Scholar
Cutrona, S. L. et al. Primary care providers’ opening of time-sensitive alerts sent to commercial electronic health record inBaskets. J. Gen. Intern. Med. 32, 1210–1219 (2017).
PubMed
PubMed Central
Google Scholar
Rumlow, Z. et al. The impact of diagnosis-specific plan templates on admission note writing time: a quality improvement initiative. J. Grad. Med. Educ. 16, 581–587 (2024).
PubMed
PubMed Central
Google Scholar
Nguyen, O. T. et al. Primary care physicians’ electronic health record proficiency and efficiency behaviors and time interacting with electronic health records: a quantile regression analysis. J. Am. Med. Inform. Assoc. JAMIA 29, 461–471 (2021).
Google Scholar
Chen, B. et al. Mining tasks and task characteristics from electronic health record audit logs with unsupervised machine learning. J. Am. Med. Inform. Assoc. 28, 1168–1177 (2021).
PubMed
PubMed Central
Google Scholar
Lou, S. S., Liu, H., Harford, D., Lu, C. & Kannampallil, T. Characterizing the macrostructure of electronic health record work using raw audit logs: an unsupervised action embeddings approach. J. Am. Med. Inform. Assoc. 30, 539–544 (2023).
PubMed
Google Scholar
Tiase, V. L., Sward, K. A. & Facelli, J. C. A scalable and extensible logical data model of electronic health Record Audit Logs for Temporal Data Mining (RNteract): model conceptualization and formulation. JMIR Nurs. 7, e55793 (2024).
PubMed
PubMed Central
Google Scholar
Zhang, X., Zhao, Y., Yan, C., Derr, T. & Chen, Y. Inferring EHR utilization workflows through audit logs. Amia. Annu. Symp. Proc. 2022, 1247–1256 (2023).
PubMed
PubMed Central
Google Scholar
Chen, Y., Adler-Milstein, J. & Sinsky, C. Measuring and maximizing undivided attention in the context of electronic health records. Appl. Clin. Inform. https://doi.org/10.1055/a-1892-1437. (2022)
Moy, A. J. et al. Characterizing multitasking and workflow fragmentation in electronic health records among emergency department clinicians: using time-motion data to understand documentation burden. Appl. Clin. Inform. 12, 1002–1013 (2021).
PubMed
PubMed Central
Google Scholar
Jones, B., Zhang, X., Malin, B. A. & Chen, Y. Learning tasks of pediatric providers from electronic health record audit logs. Amia. Annu. Symp. Proc. 2020, 612–618 (2021).
PubMed
PubMed Central
Google Scholar
Li, P. et al. Measuring collaboration through concurrent electronic health record usage: network analysis study. JMIR Med. Inform. 9, e28998 (2021).
PubMed
PubMed Central
Google Scholar
Mannering, H. et al. Assessing neonatal intensive care unit structures and outcomes before and during the COVID-19 pandemic: network analysis study. J. Med. Internet Res. 23, e27261 (2021).
PubMed
PubMed Central
Google Scholar
Chen, Y., Yan, C. & Patel, M. B. Network analysis subtleties in ICU structures and outcomes. Am. J. Respir. Crit. Care Med. 202, 1606–1607 (2020).
PubMed
PubMed Central
Google Scholar
Chen, Y., Lorenzi, N. M., Sandberg, W. S., Wolgast, K. & Malin, B. A. Identifying collaborative care teams through electronic medical record utilization patterns. J. Am. Med. Inform. Assoc. JAMIA 24, e111–e120 (2017).
PubMed
Google Scholar
Yan, C. et al. Collaboration structures in COVID-19 critical care: retrospective network analysis study. JMIR Hum. Factors 8, e25724 (2021).
PubMed
PubMed Central
Google Scholar
Kelly Costa, D., Liu, H., Boltey, E. M. & Yakusheva, O. The structure of critical care nursing teams and patient outcomes: a network analysis. Am. J. Respir. Crit. Care Med. 201, 483–485 (2020).
PubMed
PubMed Central
Google Scholar
Kim, C. et al. Provider Networks in the Neonatal Intensive Care Unit Associate with Length of Stay. In 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC) 127–134. https://doi.org/10.1109/CIC48465.2019.00024. (2019)
Apathy, N. C., Holmgren, A. J. & Cross, D. A. Physician EHR time and visit volume following adoption of team-based documentation support. JAMA Intern. Med. 184, 1212–1221 (2024).
PubMed
Google Scholar
Tang, M., Holmgren, A. J., Huckman, R. S., Pany, M. J. & McWilliams, J. M. Modalities, Mo Problems: impacts of provider modality switching in hybrid outpatient clinics. Acad. Manag. Proc. 2024, 13107 (2024).
Google Scholar
Jiang, S. Y., Hum, R. S., Vawdrey, D. & Mamykina, L. In search of social translucence: an audit log analysis of handoff documentation views and updates. Amia. Annu. Symp. Proc. 2015, 669–676 (2015).
PubMed
PubMed Central
Google Scholar
Lyles, C. R. et al. Using electronic health record portals to improve patient engagement: research priorities and best practices. Ann. Intern. Med. 172, S123–S129 (2020).
PubMed
PubMed Central
Google Scholar
Zhang, X. et al. Association between patient portal engagement and weight loss outcomes in patients after bariatric surgery: longitudinal observational study using electronic health records. J. Med. Internet Res. 26, e56573 (2024).
PubMed
PubMed Central
Google Scholar
Davis, S. E., Embí, P. J. & Matheny, M. E. Sustainable deployment of clinical prediction tools—a 360° approach to model maintenance. J. Am. Med. Inform. Assoc. 31, 1195–1198 (2024).
PubMed
PubMed Central
Google Scholar
Guo, L. L. et al. EHR foundation models improve robustness in the presence of temporal distribution shift. Sci. Rep. 13, 3767 (2023).
CAS
PubMed
PubMed Central
Google Scholar
Brown, K. E. et al. Large language models are less effective at clinical prediction tasks than locally trained machine learning models. J. Am. Med. Inform. Assoc. ocaf038. https://doi.org/10.1093/jamia/ocaf038. (2025)
Wornow, M. et al. The shaky foundations of large language models and foundation models for electronic health records. Npj Digit. Med. 6, 1–10 (2023).
Google Scholar
Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).
CAS
PubMed
Google Scholar
Zhou, Y. et al. A foundation model for generalizable disease detection from retinal images. Nature 622, 156–163 (2023).
CAS
PubMed
PubMed Central
Google Scholar
Guo, L. L. et al. A multi-center study on the adaptability of a shared foundation model for electronic health records. Npj Digit. Med. 7, 1–9 (2024).
Google Scholar
Peng, C. et al. A study of generative large language model for medical research and healthcare. NPJ Digit. Med. 6, 210 (2023).
PubMed
PubMed Central
Google Scholar
Krishnan, R., Rajpurkar, P. & Topol, E. J. Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 6, 1346–1352 (2022).
Google Scholar
Katsoulakis, E. et al. Digital twins for health: a scoping review. NPJ Digit. Med. 7, 77 (2024).
PubMed
PubMed Central
Google Scholar
Embí, P. J., Rhew, D. C., Peterson, E. D. & Pencina, M. J. Launching the Trustworthy and Responsible AI Network (TRAIN): A Consortium to Facilitate Safe and Effective AI Adoption. JAMA https://doi.org/10.1001/jama.2025.1331. (2025)
Maddox, T. M. et al. Generative AI in Medicine — Evaluating Progress and Challenges. N. Engl. J. Med. 0
You, J. G., Hernandez-Boussard, T., Pfeffer, M. A., Landman, A. & Mishuris, R. G. Clinical trials informed framework for real world clinical implementation and deployment of artificial intelligence applications. Npj Digit. Med. 8, 1–5 (2025).
Google Scholar
McCoy, A. B. et al. Clinician collaboration to improve clinical decision support: the Clickbusters initiative. J. Am. Med. Inform. Assoc. 29, 1050–1059 (2022).
PubMed
PubMed Central
Google Scholar
Baxter, S. L., Apathy, N. C., Cross, D. A., Sinsky, C. & Hribar, M. R. Measures of electronic health record use in outpatient settings across vendors. J. Am. Med. Inform. Assoc. JAMIA 28, 955–959 (2021).
PubMed
Google Scholar
Cohen, G. R., Boi, J., Johnson, C., Brown, L. & Patel, V. Measuring time clinicians spend using EHRs in the inpatient setting: a national, mixed-methods study. J. Am. Med. Inform. Assoc. JAMIA 28, 1676–1682 (2021).
PubMed
Google Scholar
Wu, D. T. Y. et al. Using EHR audit trail logs to analyze clinical workflow: A case study from community-based ambulatory clinics. Amia. Annu. Symp. Proc. 2017, 1820–1827 (2018).
PubMed
PubMed Central
Google Scholar
Sinsky, C. et al. Allocation of physician time in ambulatory practice: a time and motion study in 4 specialties. Ann. Intern. Med. 165, 753–760 (2016).
PubMed
Google Scholar
Were, M. C. et al. Role and use of race in artificial intelligence and machine learning models related to health. J. Med. Internet Res. 27, e73996 (2025).
PubMed
PubMed Central
Google Scholar
Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. Npj Digit. Med. 1, 1–10 (2018).
Google Scholar
Grabowska, M. E. et al. Developing and evaluating pediatric phecodes (Peds-Phecodes) for high-throughput phenotyping using electronic health records. J. Am. Med. Inform. Assoc. 31, 386–395 (2024).
PubMed
Google Scholar
Hripcsak, G. & Albers, D. J. Next-generation phenotyping of electronic health records. J. Am. Med. Inform. Assoc. 20, 117–121 (2013).
PubMed
Google Scholar
Yasrebi-de Kom, I. A. R. et al. Electronic health record-based prediction models for in-hospital adverse drug event diagnosis or prognosis: a systematic review. J. Am. Med. Inform. Assoc. 30, 978–988 (2023).
PubMed
PubMed Central
Google Scholar
Dos Santos, F. C. et al. The effect of a combined mHealth and community health worker intervention on HIV self-management. J. Am. Med. Inform. Assoc. 32, 510–517 (2025).
PubMed
Google Scholar
Liu, S. et al. Leveraging explainable artificial intelligence to optimize clinical decision support. J. Am. Med. Inform. Assoc. 31, 968–974 (2024).
PubMed
PubMed Central
Google Scholar
Ozkaynak, M., Ponnala, S. & Werner, N. E. Patient-Oriented Workflow Approach. In Reengineering Clinical Workflow in the Digital and AI Era: Toward Safer and More Efficient Care (eds. Zheng, K., Westbrook, J. & Patel, V. L.) 213–229 (Springer Nature Switzerland, Cham, https://doi.org/10.1007/978-3-031-82971-0_11. 2025).
Sánchez-Salmerón, R. et al. Machine learning methods applied to triage in emergency services: A systematic review. Int. Emerg. Nurs. 60, 101109 (2022).
PubMed
Google Scholar