Connect with us

AI Research

Generative artificial intelligence in entrepreneurship education enhances entrepreneurial intention through self-efficacy and university support

Published

on


Theory of planned behavior

The Theory of Planned Behavior (TPB) provides a robust and widely validated framework for deciphering the antecedents of individual behavior, particularly within the domain of entrepreneurial intention13,20. In its foundational form, TPB postulates that an individual’s behavioral intention is the most proximal determinant of actual behavior, and this intention, in turn, is shaped by a confluence of three factors: attitudes toward the behavior, subjective norms, and perceived behavioral control15. When applied to the context of nascent entrepreneurship, these factors can be operationalized as an individual’s personal evaluation of entrepreneurial activities, the perceived social pressure to engage in (or refrain from) such activities, and a self-assessment of one’s capability to successfully execute the tasks inherent in launching and managing a new venture21.

However, while traditional applications of TPB have provided valuable insights into the formation of entrepreneurial intention22 the rapidly evolving landscape of higher education, particularly the advent of GAISEE, necessitates a more nuanced and expanded theoretical perspective. This study, therefore, extends the traditional TPB model in two critical ways. First, it explicitly incorporates the construct of entrepreneurial self-efficacy, conceptualized as an individual’s belief in their ability to successfully perform the multifaceted tasks associated with entrepreneurship23. This is not merely a semantic adjustment; entrepreneurial self-efficacy aligns closely with TPB’s perceived behavioral control but provides a more granular and domain-specific lens through which to examine the individual’s perceived capabilities within the entrepreneurial context. As such, we posit that accurately measuring entrepreneurial self-efficacy enhances the predictive power of the model, particularly in a technology-infused educational setting. Second, recognizing the profound influence of the institutional context on student behavior, we introduce the university ecosystem as a critical moderating variable. This expansion acknowledges that the university environment, encompassing factors such as resource availability, programmatic support, and cultural norms, can significantly amplify or dampen the effects of both GAISEE and entrepreneurial self-efficacy on entrepreneurial intention. By integrating these elements, the study pushes beyond a purely individual-level analysis of entrepreneurial intention formation, acknowledging that intention is not formed in a vacuum but is instead deeply embedded within a broader socio-technical ecosystem24. This expanded theoretical lens, therefore, underscores the novelty and adaptability of TPB to the exigencies of the new technological era, demonstrating its continued relevance in understanding the complex interplay between individual cognition, technological advancements, and institutional support in shaping entrepreneurial behavior. This new approach is important because it helps us understand how technology and support systems can work together to encourage more students to become entrepreneurs.

Generative artificial intelligence supported entrepreneurship education

GAISEE represents a fundamental departure from conventional pedagogical approaches, marking a paradigm shift in how entrepreneurship is taught and learned in higher education institutions11,25. Unlike traditional entrepreneurship education, which often relies heavily on passive knowledge transfer through lectures and case studies, GAISEE leverages the unique capabilities of generative AI to create a dynamic, interactive, and highly personalized learning environment5. This is not merely an incremental improvement but a qualitative shift in educational methodology. The core innovation of GAISEE lies in its “generative” nature. Instead of pre-packaged content and predetermined learning pathways, students actively engage with AI tools that can generate realistic business simulations, create novel product ideas, simulate market scenarios, and provide tailored feedback on student-generated business plans26.

This immersive and experiential approach fosters a deeper level of cognitive engagement, enabling students to not only learn theoretical concepts but also apply them in a simulated environment that closely mirrors the complexities of real-world entrepreneurship, moving from abstract concepts to concrete application. For example, students can use generative AI to develop and test marketing campaigns, analyze competitor strategies, and even simulate the process of securing funding. Such activities were rarely feasible with traditional methods and only available to a select few through internships or specialized programs. Furthermore, GAISEE’s inherent adaptability, driven by continuous content generation and AI-powered feedback loops, allows for real-time adjustments in teaching strategies based on individual student progress and learning styles27. This stands in stark contrast to the relatively static and uniform curricula characteristic of conventional entrepreneurship education. The flexibility afforded by GAISEE allows educators to personalize learning paths, catering to the unique needs and strengths of each student, thereby fostering a more inclusive and effective educational experience. This personalized approach accelerates learning and deepens understanding.

By providing these immersive, adaptive, and personalized learning experiences, GAISEE not only enhances students’ technical knowledge of entrepreneurship but also cultivates their problem-solving skills, critical thinking abilities, and entrepreneurial mindset, preparing them to navigate the uncertainties and challenges of the modern business environment28. This transformative potential of GAISEE, therefore, extends beyond simply improving existing educational practices; it opens up entirely new avenues for cultivating entrepreneurial intention and nurturing a new generation of entrepreneurs equipped with the skills and mindset to thrive in an increasingly complex and dynamic world14.

Generative artificial intelligence supported entrepreneurship education and entrepreneurial self-efficacy

The advent of GAISEE is reshaping the pedagogical landscape of higher education, offering a transformative approach to nurturing entrepreneurial competencies among students27. By integrating the capabilities of generative AI, GAISEE transcends traditional didactic methods, creating a multifaceted learning ecosystem where students can actively engage with simulated entrepreneurial challenges6. This innovative educational model not only enriches the curriculum but also profoundly influences students’ attitudes and confidence toward entrepreneurial endeavors2. The adaptive and creative nature of generative AI provides a distinctive advantage for GAISEE in bolstering students’ entrepreneurial self-efficacy. Grounded in social cognitive theory, which posits that self-efficacy significantly influences behavioral outcomes29 GAISEE serves as a potent instrument for enhancing students’ entrepreneurial knowledge, skills, and ultimately, their self-efficacy30.

Moreover, heightened entrepreneurial self-efficacy, cultivated through GAISEE, signifies substantial advancements in students’ mastery of entrepreneurial knowledge, their ability to apply this knowledge in practical scenarios, and their capacity for opportunity recognition23. This comprehensive development lays a robust foundation for the formation of strong entrepreneurial intentions. Specifically, GAISEE facilitates immersive engagement with cutting-edge AI technologies and contemporary entrepreneurial theories. More critically, it enables students to solidify their understanding and skills through hands-on operation and project-based learning. As students navigate complex problem-solving tasks, identify viable entrepreneurial opportunities, and develop comprehensive business plans, their self-efficacy is continuously challenged and enhanced23,31. Through practical applications such as using AI to simulate market scenarios or generate innovative product ideas5 students gain a deeper understanding of entrepreneurial processes. For example, utilizing generative AI resources, including hardware, data, software tools, an innovative culture, and skilled personnel, can significantly enhance entrepreneurial performance by fostering internal integration and external collaboration10. This experiential learning approach allows students to see the tangible results of their efforts, reinforcing their belief in their abilities to succeed as entrepreneurs. This process elevates entrepreneurship education beyond mere knowledge transfer, transforming it into an active, engaging, and self-empowering journey. Consequently, based on these enriched educational experiences, this study posits the following hypothesis:

H1: Generative artificial intelligence supported entrepreneurship education positively influences entrepreneurial self-efficacy.

Generative artificial intelligence supported entrepreneurship education and entrepreneurial intention

GAISEE, characterized by its interactive and immersive features, presents a novel and dynamic learning platform for students, significantly influencing their entrepreneurial intentions11. In alignment with the Theory of Planned Behavior, which underscores that behavioral intentions are direct precursors to actual behavior, GAISEE exerts a substantial influence on students’ attitudes, subjective norms, and perceived behavioral control regarding entrepreneurship21. Through GAISEE courses, students are afforded the opportunity to engage in realistic business simulations, thereby enhancing their problem-solving and decision-making capabilities and fostering greater confidence in their ability to succeed in entrepreneurial ventures27. For instance, students can use generative AI tools to develop and refine business models, simulate market entry strategies, and even practice pitching their ideas to virtual investors, receiving immediate, tailored feedback5. This hands-on experience not only equips them with practical skills but also reinforces their belief in their entrepreneurial potential. The design of these courses aligns with the latest understanding of generative learning principles, encouraging students to actively explore, experiment, and learn through a self-directed process28. The application of AI to enhance experiential learning and authentic assessment through realistic scenarios and feedback mechanisms further improves the relevance of the educational content for students26.

Furthermore, interaction with AI technology within the GAISEE framework enables students to better perceive and assess the risks and opportunities inherent in the entrepreneurial process, thereby cultivating a more positive and proactive entrepreneurial attitude28. According to social cognitive theory, such a positive attitude is a critical driver of entrepreneurial behavior29. The implementation of GAISEE also reinforces subjective norms; students often collaborate in teams within simulated environments, which enhances their teamwork skills and creates a perception of social support for entrepreneurial actions through peer interactions and mentorship from experienced entrepreneurs facilitated by the platform7. Consequently, students may feel recognized and encouraged by their peers and mentors to pursue entrepreneurial paths, further bolstering their entrepreneurial intention. From the perspective of perceived behavioral control, the AI components within GAISEE courses deliver real-time feedback and personalized assistance, empowering students to effectively address entrepreneurial challenges and mitigating self-doubt about their ability to execute entrepreneurial activities successfully26. This targeted support enhances students’ self-perception of possessing the necessary skills and resources to undertake and complete entrepreneurial tasks, thus strengthening their control over entrepreneurial behavior. As an innovative and transformative approach to entrepreneurship education, GAISEE significantly enhances students’ entrepreneurial intention by positively influencing the psychological factors associated with entrepreneurship14. Therefore, this study proposes the following hypothesis:

H2: Generative artificial intelligence supported entrepreneurship education positively influences entrepreneurial intention.

Entrepreneurial self-efficacy and entrepreneurial intention

Entrepreneurial self-efficacy stands as a cornerstone in the formation of an individual’s entrepreneurial intention, reflecting a robust belief in one’s own capabilities to successfully navigate the entrepreneurial landscape32. Within the framework of the Theory of Planned Behavior, entrepreneurial self-efficacy aligns closely with the concept of perceived behavioral control, which is a critical determinant of behavioral intention21,23. A strong sense of entrepreneurial self-efficacy has been empirically demonstrated to exert a positive influence on an individual’s entrepreneurial intention33. This is because heightened confidence in one’s entrepreneurial abilities enhances the motivation and resolve to engage in entrepreneurial activities. Individuals with high entrepreneurial self-efficacy are more likely to perceive entrepreneurial challenges as surmountable and view entrepreneurship as a viable and attractive career path15.

Conversely, a deficiency in entrepreneurial self-efficacy can significantly dampen one’s entrepreneurial aspirations and intentions. A primary objective of effective entrepreneurship education is to cultivate and strengthen students’ entrepreneurial self-efficacy, thereby building their confidence and fostering positive expectations regarding their entrepreneurial capabilities34. GAISEE plays a crucial role in this process by providing students with simulated entrepreneurial experiences and personalized feedback, which effectively raise their entrepreneurial self-efficacy35. Through these immersive and interactive learning experiences, students gain practical insights and develop a stronger belief in their ability to succeed, which in turn, strengthens their desire and plans to pursue entrepreneurial activities in the future. For instance, by engaging in AI-simulated business challenges, students can test their decision-making skills and receive immediate feedback on their performance, reinforcing their confidence in their entrepreneurial abilities. Therefore, this study proposes the following hypothesis:

H3: Entrepreneurial self-efficacy positively influences entrepreneurial intention.

The mediating effect of entrepreneurial self-efficacy

The relationship between GAISEE and entrepreneurial intention cannot overlook the concept of entrepreneurial self-efficacy, which is the confidence in one’s ability to execute entrepreneurial activities35,36. Entrepreneurial self-efficacy plays a crucial role in the formation of entrepreneurial intention35 and is considered a psychological state reflecting an individual’s self-assessment of their ability to identify opportunities, mobilize resources, and apply strategies for effective entrepreneurship23. While the foundational Theory of Planned Behavior (TPB) introduced Perceived Behavioral Control (PBC) – a construct closely related to self-efficacy – as a direct antecedent of intention13and some recent discussions have explored its potential moderating influences, the specific role of entrepreneurial self-efficacy in the context of educational interventions is strongly supported in the literature as a mediator. Educational programs, particularly innovative approaches like GAISEE, are designed to directly build and enhance specific competencies and the belief in one’s ability to perform related tasks5,27. In this vein, GAISEE provides students with simulated entrepreneurial experiences, personalized feedback, and opportunities to apply generative AI tools, all of which are posited to directly enhance their entrepreneurial self-efficacy28. This newly acquired or strengthened entrepreneurial self-efficacy then serves as a critical psychological mechanism that translates the educational experience into a heightened entrepreneurial intention. Numerous contemporary studies within entrepreneurship education empirically support this mediational pathway. For instance, Al-Qadasi et al.23 and Amani et al.25 found that entrepreneurial self-efficacy significantly mediates the relationship between entrepreneurship education and entrepreneurial intentions. Similarly, Wang et al.36 and Taneja et al.24 demonstrated the mediating effect of entrepreneurial self-efficacy in linking educational or experiential inputs to entrepreneurial outcomes. Bachmann et al.11 also highlighted entrepreneurial self-efficacy as a key mediator in the process through which digital competencies translate into entrepreneurial intention. Therefore, conceptualizing entrepreneurial self-efficacy as a mediator aligns with the logic that GAISEE fosters a belief in one’s capabilities (entrepreneurial self-efficacy), which subsequently fuels the intention to pursue entrepreneurial endeavors. This psychological mechanism enables GAISEE to stimulate and enhance students’ entrepreneurial intention by improving their self-efficacy. Based on the theoretical and practical understanding of entrepreneurial self-efficacy, this study proposes:

H4: Entrepreneurial self-efficacy mediates the relationship between generative artificial intelligence supported entrepreneurship education and entrepreneurial intention.

The moderating effect of university entrepreneurial environment

A supportive university entrepreneurial environment plays a critical role in amplifying the effectiveness of entrepreneurship education and catalyzing students’ entrepreneurial potential by providing essential resources, mentorship, and a nurturing culture25. The optimization of the university ecosystem, encompassing factors such as a vibrant entrepreneurial atmosphere, supportive policies, and strategic resource allocation, significantly enhances students’ engagement with GAISEE. This, in turn, deepens their understanding of entrepreneurial concepts and cultivates their ability to apply these concepts in practical settings37. By fostering a positive learning atmosphere and offering ample opportunities for hands-on experience, a strengthened entrepreneurial context enables GAISEE to more effectively nurture students’ entrepreneurial self-efficacy38. Functioning as an external catalyst in generative AI-based education, the entrepreneurial environment provides students with increased access to enterprise collaborations, mentorship opportunities, and crucial resources31. These supportive measures facilitate students’ mastery of entrepreneurial knowledge and significantly boost their confidence in applying this knowledge to real-world entrepreneurial practice.

When universities actively encourage entrepreneurial activities, provide necessary resources, and foster collaborations with businesses, students are more inclined to transform the knowledge and skills acquired through GAISEE into concrete entrepreneurial motivations and actionable plans39. The entrepreneurial context not only offers educational resources and cultivates an entrepreneurial culture, thereby enriching and practicalizing the entrepreneurship education process, but it also provides valuable networks and platforms that promote the integration of students’ innovative thinking with their practical abilities38. This integration is crucial for helping students develop a clearer and more robust entrepreneurial intention. A supportive university ecosystem can significantly enhance the educational impact of GAISEE, ensuring that the experiences and learning gained in the course have a more profound and lasting influence on students’ future entrepreneurial decisions39. Moreover, an exemplary university entrepreneurial environment can inspire students to actively participate in entrepreneurial competitions, workshops, and other extracurricular activities, which further strengthens the entrepreneurial knowledge and skills obtained through GAISEE and paves the way for their future entrepreneurial endeavors40.

The university entrepreneurial environment exerts a direct influence on students’ perceptions of entrepreneurial behavior and indirectly impacts the development of their entrepreneurial capabilities and the formation of their entrepreneurial intention by providing essential resources and support41. Key supportive aspects of the university ecosystem include fostering an encouraging entrepreneurial spirit on campus, providing readily available entrepreneurial resources and guidance, and establishing close ties with business practices38. These elements collectively create a robust ecosystem that reinforces students’ entrepreneurial experiences and skill development, enabling entrepreneurship education to achieve superior practical outcomes21. An optimized environment facilitates the effective transformation of entrepreneurial self-efficacy into entrepreneurial intention, increasing the likelihood that students will put the entrepreneurial skills and mindsets they have learned into practice38. In a positive entrepreneurial context, the entrepreneurial support and confidence students perceive are more likely to translate into actual entrepreneurial action intentions25. Therefore, this study posits:

H5: University entrepreneurial environment positively moderates the relationship between generative artificial intelligence supported entrepreneurship education and entrepreneurial self-efficacy.

H6: University entrepreneurial environment positively moderates the relationship between generative artificial intelligence supported entrepreneurship education and entrepreneurial intention.

H7: University entrepreneurial environment positively moderates the relationship between entrepreneurial self-efficacy and entrepreneurial intention.

Research model

The research model constructed in this study aims to explore the mechanisms through which GAISEE affects university students’ entrepreneurial intention and the moderating role of the university entrepreneurial environment. Figure 1 presents an integrated model that includes independent, dependent, mediating, moderating, and control variables, striving to comprehensively reveal how GAISEE influences students’ entrepreneurial intention through entrepreneurial self-efficacy and examines how university entrepreneurial environment optimizes this process. To account for potential confounding factors and enhance the robustness of our findings, we included several control variables in our analysis: gender, age, academic discipline, and family background in entrepreneurship. The inclusion of these variables was based on existing literature suggesting their potential influence on entrepreneurial intentions and related constructs. Prior research has indicated that gender differences may exist in entrepreneurial intentions, self-efficacy, and perceptions of the entrepreneurial environment10. Including gender as a control variable allows us to isolate the effects of GAISEE while accounting for potential gender-based variations. Age has also been identified as a factor that can influence entrepreneurial intentions, with younger individuals often exhibiting higher levels of entrepreneurial aspiration. Controlling for age helps ensure that the observed effects are not merely due to age-related differences. Students from different academic disciplines may have varying levels of exposure to entrepreneurship concepts and varying predispositions toward entrepreneurial careers42. For instance, business students might inherently possess higher entrepreneurial intentions compared to those from other fields. Controlling for academic discipline allows us to account for these potential differences. Prior exposure to entrepreneurship through family businesses can significantly influence an individual’s entrepreneurial intentions and self-efficacy. Individuals with a family background in entrepreneurship may have different motivations, resources, and support systems compared to those without such a background. Controlling for this variable helps isolate the unique impact of GAISEE43.

Fig. 1



Source link

AI Research

‘No honour among thieves’: M&S hacking group starts turf war

Published

on



A clash between rival criminal ransomware groups could result in corporate victims being extorted twice, cyber experts warn



Source link

Continue Reading

AI Research

Insurance Industry Rejects Proposed Moratorium on State Artificial Intelligence Regulation

Published

on

By


By Chad Hemenway

A proposed decade-long moratorium on state regulation of artificial intelligence has gained the attention of many, including those within the insurance industry.

The 10-year prohibition of AI regulation is contained within the sweeping tax bill, “One Big Beautiful Bill,” and would preempt laws and regulations already in place in dozens of states.

The National Association of Professional Insurance Agents (PIA) on June 16 sent a letter “expressing significant concern” to Senate leadership, who submitted a reconciliation budget bill that has already passed through the House of Representatives.

“PIA strongly urges the Senate to eliminate the reconciliation language enforcing a 10-year moratorium on state AI legislation and regulation, or explicitly exempt the insurance industry’s state regulation of AI because the industry is already appropriately regulated by the state,” said the letter, signed by Mike Skiados, CEO of PIA.

PIA referenced a model already adopted by the National Association of Insurance Commissioners (NAIC) that requires insurers to implement AI governance programs in accordance with all existing state and federal laws. Nearly 30 states have adopted the NAIC’s model on the use of AI by insurers.

Earlier in June, NAIC sent a letter to federal lawmakers following the passage of the bill in the House. The commissioners said state regulation has been effective in evolving market conditions.

“This system has not only protected consumers and fostered innovation but has also allowed for the flexibility and experimentation that is essential in a rapidly changing world,” said NAIC leadership in the letter. “By allowing states to develop and implement appropriately tailored regulatory frameworks, the system ensures that oversight is both robust and adaptable.”

“State insurance regulators understand that AI is a transformative technology that can be leveraged to benefit insurance policyholders by, among other things, creating new product offerings, improving the efficiency of the insurance business, and transforming the consumer experience.”

The language–more specifically the definition of AI within the bill–is also of concern. NAIC called it “overly broad” and questioned whether it not only applies to machine learning but “existing analytical tools and software that insurers rely on every day, including calculations, simulations, and stochastic forecasts…and a multitude of insurtech provided analytical systems for rate setting, underwriting, and claims processing.”

To that end, the American InsurTech Council (AITC) said it “strongly opposes” the AI state regulation moratorium, which it said would “create a dangerous vacuum in oversight during a period of rapid technological change.”

“Such a ban would undermine the foundational principles of insurance regulation in the United States and jeopardize consumer protections at a time when AI is rapidly transforming the way insurance is developed, priced, marketed, underwritten, and delivered,” said the AITC in a statement.

In May, state attorneys general in 40 states urged Congress to get rid of the moratorium proposal within the bill.

On June 16, the National Council of Insurance Legislators (NCOIL) in a statement said a ban on state regulation would “disrupt the overall markets that we oversee” and “wrongly curtail” state legislators’ ability to make policy.

The group said constituents have “been steadfast in asking for protections against the current unknowns surrounding AI, and they cannot wait 10 years for a state-based policy response.”

Topics
InsurTech
Legislation
Data Driven
Artificial Intelligence
Market

Interested in Ai?

Get automatic alerts for this topic.



Source link

Continue Reading

AI Research

Why it is vital that you understand the infrastructure behind AI

Published

on


As demand increases for AI solutions, the competition around the huge infrastructure required to run AI models is becoming ever more fierce. This affects the entire AI chain, from computing and storage capacity in data centres, through processing power in chips, to consideration of the energy needed to run and cool equipment.

When implementing an AI strategy, companies have to look at all these aspects to find the best fit for their needs. This is harder than it sounds. A business’s decision on how to deploy AI is very different to choosing a static technology stack to be rolled out across an entire organisation in an identical way. 

Businesses have yet to understand that a successful AI strategy is “no longer a tech decision made in a tech department about hardware”, says Mackenzie Howe, co-founder of Atheni, an AI strategy consultant. As a result, she says, nearly three-quarters of AI rollouts do not give any return on investment.

Department heads unaccustomed to making tech decisions will have to learn to understand technology. “They are used to being told ‘Here’s your stack’,” Howe says, but leaders now have to be more involved. They must know enough to make informed decisions. 

While most businesses still formulate their strategies centrally, decisions on the specifics of AI have to be devolved as each department will have different needs and priorities. For instance legal teams will emphasise security and compliance but this may not be the main consideration for the marketing department. 

“If they want to leverage AI properly — which means going after best-in-class tools and much more tailored approaches — best in class for one function looks like a different best in class for a different function,” Howe says. Not only will the choice of AI application differ between departments and teams, but so might the hardware solution.

One phrase you might hear as you delve into artificial intelligence is “AI compute”. This is a term for all the computational resources required for an AI system to perform its tasks. The AI compute required in a particular setting will depend on the complexity of the system and the amount of data being handled.

The decision flow: what are you trying to solve?

Although this report will focus on AI hardware decisions, companies should bear in mind the first rule of investing in a technology: identify the problem you need to solve first. Avoiding AI is no longer an option but simply adopting it because it is there will not transform a business. 

Matt Dietz, the AI and security leader at Cisco, says his first question to clients is: what process and challenge are you trying to solve? “Instead of trying to implement AI for the sake of implementing AI . . . is there something that you are trying to drive efficiency in by using AI?,” he says.

Companies must understand where AI will add the most value, Dietz says, whether that is enhancing customer interactions or making these feasible 24/7. Is the purpose to give staff access to AI co-pilots to simplify their jobs or is it to ensure consistent adherence to rules on compliance?

“When you identify an operational challenge you are trying to solve, it is easier to attach a return on investment to implementing AI,” Dietz says. This is particularly important if you are trying to bring leadership on board and the initial investment seems high.

Companies must address further considerations. Understanding how much “AI compute” is required — in the initial phases as well as how demand might grow — will help with decisions on how and where to invest. “An individual leveraging a chatbot doesn’t have much of a network performance effect. An entire department leveraging the chatbot actually does,” Dietz says. 

Infrastructure is therefore key: specifically having the right infrastructure for the problem you are trying to solve. “You can have an unbelievably intelligent AI model that does some really amazing things, but if the hardware and the infrastructure is not set up to support that then you are setting yourself up for failure,” Dietz says. 

He stresses that flexibility around providers, fungible hardware and capacity is important. Companies should “scale as the need grows” once the model and its efficiencies are proven.

The data server dilemma: which path to take?

When it comes to data servers and their locations, companies can choose between owning infrastructure on site, or leasing or owning it off site. Scale, flexibility and security are all considerations. 

While on-premises data centres are more secure they can be costly both to set up and run, and not all data centres are optimised for AI. The technology must be scalable, with high-speed storage and low latency networking. The energy to run and cool the hardware should be as inexpensive as possible and ideally sourced from renewables, given the huge demand.

Space-constrained enterprises with distinct requirements tend to lease capacity from a co-location provider, whose data centre hosts servers belonging to different users. Customers either install their own servers or lease a “bare metal”, a type of (dedicated) server, from the co-location centre. This option gives a company more control over performance and security and it is ideal for businesses that need custom AI hardware, for instance clusters of high-density graphics processing units (GPUs) as used in model training, deep learning or simulations. 

Another possibility is to use prefabricated and pre-engineered modules, or modular data centres. These suit companies with remote facilities that need data stored close at hand or that otherwise do not have access to the resources for mainstream connection. This route can reduce latency and reliance on costly data transfers to centralised locations. 

Given factors such as scalability and speed of deployment as well as the ability to equip new modules with the latest technology, modular data centres are increasingly relied upon by the cloud hyperscalers, such as Microsoft, Google and Amazon, to enable faster expansion. The modular market was valued at $30bn in 2024 and its value is expected to reach $81bn by 2031, according to a 2025 report by The Insight Partners.

Modular data centres are only a segment of the larger market. Estimates for the value of data centres worldwide in 2025 range from $270bn to $386bn, with projections for compound annual growth rates of 10 per cent into the early 2030s when the market is projected to be worth more than $1tn. 

Much of the demand is driven by the growth of AI and its higher resource requirements. McKinsey predicts that the demand for data centre capacity could more than triple by 2030, with AI accounting 70 per cent of that.

While the US has the most data centres, other countries are fast building their own. Cooler climates and plentiful renewable energy, as in Canada and northern Europe, can confer an advantage, but countries in the Middle East and south-east Asia increasingly see having data centres close by as a geopolitical necessity. Access to funding and research can also be a factor. Scotland is the latest emerging European data centre hub.

Chart showing consumption of power by data centres

Choose the cloud . . . 

Companies that cannot afford or do not wish to invest in their own hardware can opt to use cloud services, which can be scaled more easily. These provide access to any part or all of the components necessary to deploy AI, from GPU clusters that execute vast numbers of calculations simultaneously, through to storage and networking. 

While the hyperscalers grab the headlines because of their investments and size — they have some 40 per cent of the market — they are not the only option. Niche cloud operators can provide tailored solutions for AI workloads: CoreWeave and Lambda, for instance, specialise in AI and GPU cloud computing.

Companies may prefer smaller providers for a first foray into AI, not least because they can be easier to navigate while offering room to grow. Digital Ocean boasts of its simplicity while being optimised for developers; Kamatera offers cloud services run out of its own data centres in the US, Emea and Asia, with proximity to customers minimising latency; OVHcloud is strong in Europe, offering cloud and co-location services with an option for customers to be hosted exclusively in the EU. 

Many of the smaller cloud companies do not have their own data centres and lease the infrastructure from larger groups. In effect this means that a customer is leasing from a leaser, which is worth bearing in mind in a world fighting for capacity. That said, such businesses may also be able to switch to newer data centre facilities. These could have the advantage of being built primarily for AI and designed to accommodate the technology’s greater compute load and energy requirements. 

. . . or plump for a hybrid solution

Another solution is to have a blend of proprietary equipment with cloud or virtual off-site services. These can be hosted by the same data centre provider, many of which offer ready-made hybrid services with hyperscalers or the option to mix and match different network and cloud providers. 

For instance Equinix supports Amazon Web Services with a connection between on-premises networks and cloud services through AWS Direct Connect; the Equinix Fabric ecosystem provides a choice between cloud, networking, infrastructure and application providers; Digital Realty can connect clients to 500 cloud service providers, meaning its customers are not limited to using large players. 

There are different approaches that apply to the hybrid route, too. Each has its advantages:

  • Co-location with cloud hybrid. This can offer better connectivity between proprietary and third-party facilities with direct access to some larger cloud operators. 

  • On premises with cloud hybrid. This solution gives the owner more control with increased security, customisation options and compliance. If a company already has on-premises equipment it may be easier to integrate cloud services over time. Drawbacks can include latency problems or compatibility and network constraints when integrating cloud services. There is also the prohibitive cost of running a data centre in house.

  • Off-site servers with cloud hybrid. This is a simple option for those who seek customisation and scale. With servers managed by the data centre provider, it requires less customer input but this comes with less control, including over security. 

In all cases whenever a customer relies on a third party to handle some server needs, it gives them the advantage of being able to access innovations in data centre operations without a huge investment. 

Arti Garg, the chief technologist at Aveva, points to the huge innovation happening in data centres. “It’s significant and it is everything from power to cooling to early fault detection [and] error handling,” she says.

Garg adds that a hybrid approach is especially helpful for facilities with limited compute capacity that rely on AI for critical operations, such as power generation. “They need to think how AI might be leveraged in fault detection [so] that if they lose connectivity to the cloud they can still continue with operations,” she says. 

Using modular data centres is one way to achieve this. Aggregating data in the cloud also gives operators a “fleet-level view” of operations across sites or to provide backup. 

In an uncertain world, sovereignty is important

Another consideration when assessing data centre options is the need to comply with a home country’s rules on data. “Data sovereignty” can dictate the jurisdiction in which data is stored as well as how it is accessed and secured. Companies might be bound to use facilities located only in countries that comply with those laws, a condition sometimes referred to as data residency compliance. 

Having data centre servers closer to users is increasingly important. With technology borders springing up between China and the US, many industries must look at where their servers are based for regulatory, security and geopolitical reasons.

In addition to sovereignty, Garg of Aveva says: “There is also the question of tenancy of the data. Does it reside in a tenant that a customer controls [or] do we host data for the customer?” With AI and the regulations surrounding it changing so rapidly such questions are common.

Edge computing can bring extra resilience

One way to get around this is by computing “at the edge”. This places computing centres closer to the data source, so improving processing speeds. 

Edge computing not only reduces bandwidth-heavy data transmission, it also cuts latency, allowing for faster responses and real-time decision-making. This is essential for autonomous vehicles, industrial automation and AI-powered surveillance. Decentralisation spreads computing over many points, which will help in the event of an outage. 

As with modular data centres, edge computing is useful for operators who need greater resilience, for instance those with remote facilities in adverse conditions such as oil rigs. Garg says: “More advanced AI techniques have the ability to support people in these jobs . . . if the operation only has a cell or a tablet and we want to ensure that any solution is resilient to loss of connectivity . . . what is the solution that can run in power and compute-constrained environments?” 

Some of the resilience of edge computing comes from exploring smaller or more efficient models and using technologies deployed in the mobile phones sector.

While such operations might demand edge computing out of necessity, it is a complementary approach to cloud computing rather than a replacement. Cloud is better suited for larger AI compute burdens such as model training, deep learning and big data analytics. It provides high computational power, scalability and centralised data storage. 

Given the limitations of edge in terms of capacity — but its advantages in speed and access — most companies will probably find that a hybrid approach works best for them.

Chips with everything, CPUs, GPUs, TPUs: an explainer 

Chips for AI applications are developing rapidly. The examples below give a flavour of those being deployed, from training to operation. Different chips excel in different parts of the chain although the lines are blurring as companies offer more efficient options tailored to specific tasks. 

GPUs, or graphics processing units, offer the parallel processing power required for AI model training, best applied to complex computations of the sort required for deep learning. 

Nvidia, whose chips are designed for gaming graphics, is the market leader but others have invested heavily to try to catch up. Dietz of Cisco says: “The market is rapidly evolving. We are seeing growing diversity among GPU providers contributing to the AI ecosystem — and that’s a good thing. Competition always breeds innovation.”

AWS uses high-performance GPU clusters based on chips from Nvidia and AMD but it also runs its own AI-specific accelerators. Trainium, optimised for model training, and Inferentia, used by trained models to make predictions, have been designed by AWS subsidiary Annapurna. Microsoft Azure has also developed corresponding chips, including the Azure Maia 100 for training and an Arm-based CPU for cloud operations. 

CPUs, or central processing units, are the chips once used more commonly in personal computers. In the AI context, they do lighter or localised execution tasks such as operations in edge devices or in the inference phase of the AI process. 

Nvidia, AWS and Intel all have custom CPUs designed for networking and all major tech players have produced some form of chip to compete in edge devices. Google’s Edge TPU, Nvidia’s Jetson and Intel’s Movidius all boost AI model performance in compact devices. CPUs such as Azure’s Cobalt CPU can also be optimised for cloud-based AI workloads with faster processing, lower latency and better scalability. 

Bar chart of Forecast total capital expenditure on chips for “frontier AI” ($bn) showing Inference spending set to increase

Many CPUs use design elements from Arm, the British chip designer bought by SoftBank in 2016, on whose designs nearly all mobile devices rely. Arm says its compute platform “delivers unmatched performance, scalability, and efficiency”.

TPUs, or tensor processing units, are a further specification. Designed by Google in 2015 to accelerate the inference phase, these chips are optimised for high-speed parallel processing, making them more efficient for large-scale workloads than GPUs. While not necessarily the same architecture, competing AI-dedicated designs include AI accelerators such as AWS’s Trainium.

Breakthroughs are constantly occurring as researchers try to improve efficiency and speed and reduce energy usage. Neuromorphic chips, which mimic brain-like computations, can run operations in edge devices with lower power requirements. Stanford University in California, as well as companies including Intel, IBM and Innatera, have developed versions each with different advantages. Researchers at Princeton University in New Jersey are also working on a low-power AI chip based on a different approach to computation.

High-bandwidth memory helps but it is not a perfect solution

Memory capacity plays a critical role in AI operation and is struggling to keep up with the broader infrastructure, giving rise to the so-called memory wall problem. According to techedgeai.com, in the past two years AI compute power has grown by 750 per cent and speeds have increased threefold, while dynamic random-access memory (Dram) bandwidth has grown by only 1.6 times. 

AI systems require massive memory resources, ranging from hundreds of gigabytes to terabytes and above. Memory is particularly significant in the training phase for large models, which demand high-capacity memory to process and store data sets while simultaneously adjusting parameters and running computations. Local memory efficiency is also crucial for AI inference, where rapid access to data is necessary for real-time decision-making.

High bandwidth memory is helping to alleviate this bottleneck. While built on evolved Dram technology, high bandwidth memory introduces architectural advances. It can be packaged into the same chipset as the core GPU to provide lower latency and it is stacked more densely than Dram, reducing data travel time and improving latency. It is not a perfect solution, however, as stacking can create more heat, among other constraints.

Everyone needs to consider compatibility and flexibility

Although models continue to develop and proliferate, the good news is that “the ability to interchange between models is pretty simple as long as you have the GPU power — and some don’t even require GPUs, they can run off CPUs,” Dietz says. 

Hardware compatibility does not commit users to any given model. Having said that, change can be harder for companies tied to chips developed by service providers. Keeping your options open can minimise the risk of being “locked in”.

This can be a problem with the more dominant players. The UK regulator Ofcom referred the UK cloud market to the Competition and Markets Authority because of the dominance of three of the hyperscalers and the difficulty of switching providers. Ofcom’s objections included high fees for transferring data out, technical barriers to portability and committed spend discounts, which reduced costs but tied users to one cloud provider. 

Placing business with various suppliers offsets the risk of any one supplier having technical or capacity constraints but this can create side-effects. Problems may include incompatibility between providers, latency when transferring and synchronising data, security risk and costs. Companies need to consider these and mitigate the risks. Whichever route is taken, any company planning to use AI should make portability of data and service a primary consideration in planning. 

Flexibility is critical internally, too, given how quickly AI tools and services are evolving. Howe of Atheni says: “A lot of what we’re seeing is that companies’ internal processes aren’t designed for this kind of pace of change. Their budgeting, their governance, their risk management . . . it’s all built for that very much more stable, predictable kind of technology investment, not rapidly evolving AI capabilities.”

This presents a particular problem for companies with complex or glacial procurement procedures: months-long approval processes hamper the ability to utilise the latest technology. 

Garg says: “The agility needs to be in the openness to AI developments, keeping abreast of what’s happening and then at the same time making informed — as best you can — decisions around when to adopt something, when to be a little bit more mindful, when to seek advice and who to seek advice from.”

Industry challenges: trying to keep pace with demand

While individual companies might have modest demands, one issue for industry as a whole is that the current demand for AI compute and the corresponding infrastructure is huge. Off-site data centres will require massive investment to keep pace with demand. If this falls behind, companies without their own capacity could be left fighting for access. 

McKinsey says that, by 2030, data centres will need $6.7tn more capital to keep pace with demand, with those equipped to provide AI processing needing $5.2tn, although this assumes no further breakthroughs and no tail-off in demand. 

The seemingly insatiable demand for capacity has led to an arms race between the major players. This has further increased their dominance and given the impression that only the hyperscalers have the capital to provide flexibility on scale.

Column chart of Data centre capex (rebased, 2024 = 100) showing Capex is set to more than double by the end of the decade

Sustainability: how to get the most from the power supply

Power is a serious problem for AI operations. In April 2025 the International Energy Agency released a report dedicated to the sector. The IEA believes that grid constraints could delay one-fifth of the data centre capacity planned to be built by 2030. Amazon and Microsoft cited power infrastructure or inflated lease prices as the cause for recent withdrawals from planned expansion. They refuted reports of overcapacity.

Not only do data centres require considerable energy for computation, they draw a huge amount of energy to run and cool equipment. The power requirements of AI data centres are 10 times those of a standard technology rack, according to Soben, the global construction consultancy that is now part of Accenture. 

This demand is pushing data centre operators to come up with their own solutions for power while they wait for the infrastructure to catch up. In the short term some operators are looking at “power skids” to increase the voltage drawn off a local network. Others are planning long-term and considering installing their own small modular reactors, as used in nuclear submarines and aircraft carriers.

Another approach is to reduce demand by making cooling systems more efficient. Newer centres have turned to liquid cooling: not only do liquids have better thermal conductivity than air, the systems can be enhanced with more efficient fluids. Algorithms preemptively adjust the circulation of liquid through cold plates attached to processors (direct-to-chip cooling). Reuse of waste water makes such solutions seem green, although data centres continue to face objections in locations such as Virginia as they compete for scarce water resources.

The DeepSeek effect: smaller might be better for some

While companies continue to throw large amounts of money at capacity, the development of DeepSeek in China has raised questions such as “do we need as much compute if DeepSeek can achieve it with so much less?”. 

The Chinese model is cheaper to develop and run for businesses. It was developed despite import restrictions on top-end chips from the US to China. DeepSeek is free to use and open source — and it is also able to verify its own thinking, which makes it far more powerful as a “reasoning model” than assistants that pump out unverified answers.

Now that DeepSeek has shown the power and efficiency of smaller models, this should add to the impetus to a rethink around capacity. Not all operations need the largest model available to achieve their goals: smaller models less greedy for compute and power can be more efficient at a given job. 

Dietz says: “A lot of businesses were really cautious about adopting AI because . . . before [DeepSeek] came out, the perception was that AI was for those that had the financial means and infrastructure means.”

DeepSeek showed that users could leverage different capabilities and fine-tune models and still get “the same, if not better, results”, making it far more accessible to those without access to vast amounts of energy and compute.

Definitions

Training: teaching a model how to perform a given task.

The inference phase: the process by which an AI model can draw conclusions from new data based on the information used in its training

Latency: the time delay between an AI model receiving an input and generating an output.

Edge computing: processing on a local device. This reduces latency so is essential for systems that require a real-time response, such as autonomous cars, but it cannot deal with high-volume data processing.

Hyperscalers: providers of huge data centre capacity such as Amazon’s AWS, Microsoft’s Azure, Google Cloud and Oracle Cloud. They offer off-site cloud services with everything from compute power and pre-built AI models through to storage and networking, either all together or on a modular basis. 

AI compute: the hardware resources that run AI applications, algorithms and workloads, typically involving servers, CPUs, GPUs or other specialised chips. 

Co-location: the use of data centres which rent space where businesses can keep their servers.

Data residency: the location where data is physically stored on a server.

Data sovereignty: the concept that data is subject to the laws and regulations of the land where it was gathered. Many countries have rules about how data is gathered, controlled, stored and accessed. Where the data resides is increasingly a factor if a country feels that its security or use might be at risk.



Source link

Continue Reading

Trending