Ethics & Policy
Financial Market Applications of LLMs
The AI revolution drove frenzied investment in both private and public companies and captured the public’s imagination in 2023. Transformational consumer products like ChatGPT are powered by Large Language Models (LLMs) that excel at modeling sequences of tokens that represent words or parts of words [2]. Amazingly, structural understanding emerges from learning next-token prediction, and agents are able to complete tasks such as translation, question answering and generating human-like prose from simple user prompts.
Not surprisingly, quantitative traders have asked: can we turn these models into the next price or trade prediction [1,9,10]? That is, rather than modeling sequences of words, can we model sequences of prices or trades. This turns out to be an interesting line of inquiry that reveals much about both generative AI and financial time series modeling. Be warned this will get wonky.
LLMs are known as autoregressive learners — those using previous tokens or elements in a sequence to predict the next element or token. In quantitative trading, for example in strategies like statistical arbitrage in stocks, most research is concerned with identifying autoregressive structure. That means finding sequences of news or orders or fundamental changes that best predict future prices.
Where things break down is in the quantity and information content of available data to train the models. At the 2023 NeurIPS conference, Hudson River Trading, a high frequency trading firm, presented a comparison of the number of input tokens used to train GPT-3 with the amount of trainable tokens available in the stock market data per year HRT estimated that, with 3,000 tradable stocks, 10 data points per stock per day, 252 trading days per year, and 23400 seconds in a trading day, there are 177 billion stock market tokens per year available as market data. GPT-3 was trained on 500 billion tokens, so not far off [6].
But, in the trading context the tokens will be prices or returns or trades rather than syllables or words; the former is much more difficult to predict. Language has an underlying linguistic structure (e.g., grammar) [7]. It’s not hard to imagine a human predicting the next word in a sentence, however that same human would find it extremely challenging to predict the next return given a sequence of previous trades, hence the lack of billionaire day traders. The challenge is that there are very smart people competing away any signal in the market, making it almost efficient (“efficiently inefficient”, in the words of economist Lasse Pedersen) and hence unpredictable. No adversary actively tries to make sentences more difficult to predict — if anything, authors usually seek to make their sentences easy to understand and hence more predictable.
Looked at from another angle, there is much more noise than signal in financial data. Individuals and institutions are trading for reasons that might not be rational or tied to any fundamental change in a business. The GameStop episode in 2021 is one such example. Financial time series are also constantly changing with new fundamental information, regulatory changes, and occasional large macroeconomic shifts such as currency devaluations. Language evolves at a much slower pace and over longer time horizons.
On the other hand, there are reasons to believe that ideas from AI will work well in financial markets. One emerging area of AI research with promising applications to finance is multimodal learning [5], which aims to use different modalities of data, for example both images and textual inputs to build a unified model. With OpenAI’s DALL-E 2 model, a user can enter text and the model will generate an image. In finance, multi-modal efforts could be useful to combine information classical sources such as technical time series data (prices, trades, volumes, etc.) with alternative data in different modes like sentiment or graphical interactions on twitter, natural language news articles and corporate reports, or the satellite images of shipping activity in a commodity centric port. Here, leveraging multi-modal AI, one could potentially incorporate all these types of non-price information to predict well.
Another strategy called ‘residualization’ holds prominence in both finance and AI, though it assumes different roles in the two domains. In finance, structural `factor’ models break down the contemporaneous observations of returns across different assets into a shared component (the market return, or more generally returns of common, market-wide factors) and an idiosyncratic component unique to each underlying asset. Market and factor returns are difficult to predict and create interdependence, so it is often helpful to remove the common element when making predictions at the individual asset level and to maximize the number of independent observations in the data.
In residual network architectures such as transformers, there’s a similar idea that we want to learn a function h(X) of an input X, but it might be easier to learn the residual of h(X) to the identity map, i.e., h(X) – X. Here, if the function h(X) is close to identity, its residual will be close to zero, and hence there will be less to learn and learning can be done more efficiently. In both cases the goal is to exploit structure to refine predictions: in the finance case, the idea is to focus on predicting innovations beyond what is implied by the overall market, for residual networks the focus is on predicting innovations to the identity map.
A key ingredient for the impressive performance of LLMs work is their ability to discern affinities or strengths between tokens over long horizons known as context windows. In financial markets, the ability to focus attention across long horizons enables analysis of multi-scale phenomena, with some aspects of market changes explained across very different time horizons. For example, at one extreme, fundamental information (e.g., earnings) may be incorporated into prices over months, technical phenomena (e.g., momentum) might be realized over days, and, at the other extreme, microstructure phenomena (e.g., order book imbalance) might have a time horizon of seconds to minutes.
Capturing all of these phenomena involves analysis of multiple time horizons across the context window. However, in finance, prediction over multiple future time horizons is also important. For example, a quantitative system may seek to trade to profit from multiple different anomalies that are realized over multiple time horizons (e.g., simultaneously betting on a microstructure event and an earnings event). This requires predicting not just the next period return of the stock, but the entire term structure or trajectory of expected returns, while current transformer-style predictive models only look one period in the future.
Another financial market application of LLMs might be synthetic data creation [4,8]. This could take a few directions. Simulated stock price trajectories can be generated that mimic characteristics observed in the market and can be extremely beneficial given that financial market data is scarce relative to other sources as highlighted above in the number of tokens available. Artificial data could open the door for meta-learning techniques which have successfully been applied, for example, in robotics. In the robotic setting controllers are first trained using cheap but not necessarily accurate physics simulators, before being better calibrated using expensive real world experiments with robots. In finance the simulators could be used to coarsely train and optimize trading strategies. The model would learn high level concepts like risk aversion and diversification and tactical concepts such as trading slowly to minimize the price impact of a trade. Then precious real market data could be employed to fine-tune the predictions and determine precisely the optimal speed to trade.
Financial market practitioners are often interested in extreme events, the times when trading strategies are more likely to experience significant gains or losses. Generative models where it’s possible to sample from extreme scenarios could find use. However extreme events by definition occur rarely and hence determining the right parameters and sampling data from the corresponding distribution is fraught.
Despite the skepticism that LLMs will find use in quantitative trading, they might boost fundamental analysis. As AI models improve, it’s easy to imagine them helping analysts refine an investment thesis, uncover inconsistencies in management commentary or find latent relationships between tangential industries and businesses [3]. Essentially these models could provide a Charlie Munger for every investor.
The surprising thing about the current generative AI revolution is that it’s taken almost everyone – academic researchers, cutting edge technology firms and long-time observers – by surprise. The idea that building bigger and bigger models would lead to emergent capabilities like we see today was totally unexpected and still not fully understood.
The success of these AI models has supercharged the flow of human and financial capital into AI, which should in turn lead to even better and more capable models. So while the case for GPT-4 like models taking over quantitative trading is currently unlikely, we advocate keeping an open mind. Expecting the unexpected has been a profitable theme in the AI business.
References
- “Applying Deep Neural Networks to Financial Time Series Forecasting” Allison Koenecke. 2022
- “Attention is all you need.” A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones… Advances in Neural Information Processing Systems, 2017
- “Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models” . Lopez-Lira, Alejandro and Tang, Yuehua, (April 6, 2023) Available at SSRN
- “Generating Synthetic Data in Finance: Opportunities, Challenges and Pitfalls.” SA Assefa, D Dervovic, M Mahfouz, RE Tillman… – Proceedings of the First ACM International Conference …, 2020
- “GPT-4V(ision) System Card.” OpenAI. September 2023
- “Language models are few-shot learners.” T Brown, B Mann, N Ryder, M Subbiah, JD Kaplan… – Advances in Neural Information Processing Systems, 2020
- “Sequence to Sequence Learning with Neural Networks.” I.Sutskever,O.Vinyals,and Q.V.Le in Advances in Neural Information Processing Systems, 2014, pp. 3104–3112.
- “Synthetic Data Generation for Economists”. A Koenecke, H Varian – arXiv preprint arXiv:2011.01374, 2020
- C. C. Moallemi, M. Wang. A reinforcement learning approach to optimal execution. Quantitative Finance, 22(6):1051–1069, March 2022.
- C. Maglaras, C. C. Moallemi, M. Wang. A deep learning approach to estimating fill probabilities in a limit order book. Quantitative Finance, 22(11):1989–2003, October 2022.
Citation
For attribution in academic contexts or books, please cite this work as
Richard Dewey and Ciamac Moallemi, "Financial Market Applications of LLMs," The Gradient, 2024
@article{dewey2024financial,
author = {Richard Dewey and Ciamac Moallemi},
title = {Financial Market Applications of LLMs},
journal = {The Gradient},
year = {2024},
howpublished = {\url{https://thegradient.pub/financial-market-applications-of-llms},
}
Ethics & Policy
AI and ethics – what is originality? Maybe we’re just not that special when it comes to creativity?
I don’t trust AI, but I use it all the time.
Let’s face it, that’s a sentiment that many of us can buy into if we’re honest about it. It comes from Paul Mallaghan, Head of Creative Strategy at We Are Tilt, a creative transformation content and campaign agency whose clients include the likes of Diageo, KPMG and Barclays.
Taking part in a panel debate on AI ethics at the recent Evolve conference in Brighton, UK, he made another highly pertinent point when he said of people in general:
We know that we are quite susceptible to confident bullshitters. Basically, that is what Chat GPT [is] right now. There’s something reminds me of the illusory truth effect, where if you hear something a few times, or you say it here it said confidently, then you are much more likely to believe it, regardless of the source. I might refer to a certain President who uses that technique fairly regularly, but I think we’re so susceptible to that that we are quite vulnerable.
And, yes, it’s you he’s talking about:
I mean all of us, no matter how intelligent we think we are or how smart over the machines we think we are. When I think about trust, – and I’m coming at this very much from the perspective of someone who runs a creative agency – we’re not involved in building a Large Language Model (LLM); we’re involved in using it, understanding it, and thinking about what the implications if we get this wrong. What does it mean to be creative in the world of LLMs?
Genuine
Being genuine, is vital, he argues, and being human – where does Human Intelligence come into the picture, particularly in relation to creativity. His argument:
There’s a certain parasitic quality to what’s being created. We make films, we’re designers, we’re creators, we’re all those sort of things in the company that I run. We have had to just face the fact that we’re using tools that have hoovered up the work of others and then regenerate it and spit it out. There is an ethical dilemma that we face every day when we use those tools.
His firm has come to the conclusion that it has to be responsible for imposing its own guidelines here to some degree, because there’s not a lot happening elsewhere:
To some extent, we are always ahead of regulation, because the nature of being creative is that you’re always going to be experimenting and trying things, and you want to see what the next big thing is. It’s actually very exciting. So that’s all cool, but we’ve realized that if we want to try and do this ethically, we have to establish some of our own ground rules, even if they’re really basic. Like, let’s try and not prompt with the name of an illustrator that we know, because that’s stealing their intellectual property, or the labor of their creative brains.
I’m not a regulatory expert by any means, but I can say that a lot of the clients we work with, to be fair to them, are also trying to get ahead of where I think we are probably at government level, and they’re creating their own frameworks, their own trust frameworks, to try and address some of these things. Everyone is starting to ask questions, and you don’t want to be the person that’s accidentally created a system where everything is then suable because of what you’ve made or what you’ve generated.
Originality
That’s not necessarily an easy ask, of course. What, for example, do we mean by originality? Mallaghan suggests:
Anyone who’s ever tried to create anything knows you’re trying to break patterns. You’re trying to find or re-mix or mash up something that hasn’t happened before. To some extent, that is a good thing that really we’re talking about pattern matching tools. So generally speaking, it’s used in every part of the creative process now. Most agencies, certainly the big ones, certainly anyone that’s working on a lot of marketing stuff, they’re using it to try and drive efficiencies and get incredible margins. They’re going to be on the race to the bottom.
But originality is hard to quantify. I think that actually it doesn’t happen as much as people think anyway, that originality. When you look at ChatGPT or any of these tools, there’s a lot of interesting new tools that are out there that purport to help you in the quest to come up with ideas, and they can be useful. Quite often, we’ll use them to sift out the crappy ideas, because if ChatGPT or an AI tool can come up with it, it’s probably something that’s happened before, something you probably don’t want to use.
More Human Intelligence is needed, it seems:
What I think any creative needs to understand now is you’re going to have to be extremely interesting, and you’re going to have to push even more humanity into what you do, or you’re going to be easily replaced by these tools that probably shouldn’t be doing all the fun stuff that we want to do. [In terms of ethical questions] there’s a bunch, including the copyright thing, but there’s partly just [questions] around purpose and fun. Like, why do we even do this stuff? Why do we do it? There’s a whole industry that exists for people with wonderful brains, and there’s lots of different types of industries [where you] see different types of brains. But why are we trying to do away with something that allows people to get up in the morning and have a reason to live? That is a big question.
My second ethical thing is, what do we do with the next generation who don’t learn craft and quality, and they don’t go through the same hurdles? They may find ways to use {AI] in ways that we can’t imagine, because that’s what young people do, and I have faith in that. But I also think, how are you going to learn the language that helps you interface with, say, a video model, and know what a camera does, and how to ask for the right things, how to tell a story, and what’s right? All that is an ethical issue, like we might be taking that away from an entire generation.
And there’s one last ‘tough love’ question to be posed:
What if we’re not special? Basically, what if all the patterns that are part of us aren’t that special? The only reason I bring that up is that I think that in every career, you associate your identity with what you do. Maybe we shouldn’t, maybe that’s a bad thing, but I know that creatives really associate with what they do. Their identity is tied up in what it is that they actually do, whether they’re an illustrator or whatever. It is a proper existential crisis to look at it and go, ‘Oh, the thing that I thought was special can be regurgitated pretty easily’…It’s a terrifying thing to stare into the Gorgon and look back at it and think,’Where are we going with this?’. By the way, I do think we’re special, but maybe we’re not as special as we think we are. A lot of these patterns can be matched.
My take
This was a candid worldview that raised a number of tough questions – and questions are often so much more interesting than answers, aren’t they? The subject of creativity and copyright has been handled at length on diginomica by Chris Middleton and I think Mallaghan’s comments pretty much chime with most of that.
I was particularly taken by the point about the impact on the younger generation of having at their fingertips AI tools that can ‘do everything, until they can’t’. I recall being horrified a good few years ago when doing a shift in a newsroom of a major tech title and noticing that the flow of copy had suddenly dried up. ‘Where are the stories?’, I shouted. Back came the reply, ‘Oh, the Internet’s gone down’. ‘Then pick up the phone and call people, find some stories,’ I snapped. A sad, baffled young face looked back at me and asked, ‘Who should we call?’. Now apart from suddenly feeling about 103, I was shaken by the fact that as soon as the umbilical cord of the Internet was cut, everyone was rendered helpless.
Take that idea and multiply it a billion-fold when it comes to AI dependency and the future looks scary. Human Intelligence matters
Ethics & Policy
Preparing Timor Leste to embrace Artificial Intelligence
UNESCO, in collaboration with the Ministry of Transport and Communications, Catalpa International and national lead consultant, jointly conducted consultative and validation workshops as part of the AI Readiness assessment implementation in Timor-Leste. Held on 8–9 April and 27 May respectively, the workshops convened representatives from government ministries, academia, international organisations and development partners, the Timor-Leste National Commission for UNESCO, civil society, and the private sector for a multi-stakeholder consultation to unpack the current stage of AI adoption and development in the country, guided by UNESCO’s AI Readiness Assessment Methodology (RAM).
In response to growing concerns about the rapid rise of AI, the UNESCO Recommendation on the Ethics of Artificial Intelligence was adopted by 194 Member States in 2021, including Timor-Leste, to ensure ethical governance of AI. To support Member States in implementing this Recommendation, the RAM was developed by UNESCO’s AI experts without borders. It includes a range of quantitative and qualitative questions designed to gather information across different dimensions of a country’s AI ecosystem, including legal and regulatory, social and cultural, economic, scientific and educational, technological and infrastructural aspects.
By compiling comprehensive insights into these areas, the final RAM report helps identify institutional and regulatory gaps, which can assist the government with the necessary AI governance and enable UNESCO to provide tailored support that promotes an ethical AI ecosystem aligned with the Recommendation.
The first day of the workshop was opened by Timor-Leste’s Minister of Transport and Communication, H.E. Miguel Marques Gonçalves Manetelu. In his opening remarks, Minister Manetelu highlighted the pivotal role of AI in shaping the future. He emphasised that the current global trajectory is not only driving the digitalisation of work but also enabling more effective and productive outcomes.
Ethics & Policy
Experts gather to discuss ethics, AI and the future of publishing
Publishing stands at a pivotal juncture, said Jeremy North, president of Global Book Business at Taylor & Francis Group, addressing delegates at the 3rd International Conference on Publishing Education in Beijing. Digital intelligence is fundamentally transforming the sector — and this revolution will inevitably create “AI winners and losers”.
True winners, he argued, will be those who embrace AI not as a replacement for human insight but as a tool that strengthens publishing’s core mission: connecting people through knowledge. The key is balance, North said, using AI to enhance creativity without diminishing human judgment or critical thinking.
This vision set the tone for the event where the Association for International Publishing Education was officially launched — the world’s first global alliance dedicated to advancing publishing education through international collaboration.
Unveiled at the conference cohosted by the Beijing Institute of Graphic Communication and the Publishers Association of China, the AIPE brings together nearly 50 member organizations with a mission to foster joint research, training, and innovation in publishing education.
Tian Zhongli, president of BIGC, stressed the need to anchor publishing education in ethics and humanistic values and reaffirmed BIGC’s commitment to building a global talent platform through AIPE.
BIGC will deepen academic-industry collaboration through AIPE to provide a premium platform for nurturing high-level, holistic, and internationally competent publishing talent, he added.
Zhang Xin, secretary of the CPC Committee at BIGC, emphasized that AIPE is expected to help globalize Chinese publishing scholarships, contribute new ideas to the industry, and cultivate a new generation of publishing professionals for the digital era.
Themed “Mutual Learning and Cooperation: New Ecology of International Publishing Education in the Digital Intelligence Era”, the conference also tackled a wide range of challenges and opportunities brought on by AI — from ethical concerns and content ownership to protecting human creativity and rethinking publishing values in higher education.
Wu Shulin, president of the Publishers Association of China, cautioned that while AI brings major opportunities, “we must not overlook the ethical and security problems it introduces”.
Catriona Stevenson, deputy CEO of the UK Publishers Association, echoed this sentiment. She highlighted how British publishers are adopting AI to amplify human creativity and productivity, while calling for global cooperation to protect intellectual property and combat AI tool infringement.
The conference aims to explore innovative pathways for the publishing industry and education reform, discuss emerging technological trends, advance higher education philosophies and talent development models, promote global academic exchange and collaboration, and empower knowledge production and dissemination through publishing education in the digital intelligence era.
yangyangs@chinadaily.com.cn
-
Funding & Business1 week ago
Kayak and Expedia race to build AI travel agents that turn social posts into itineraries
-
Jobs & Careers1 week ago
Mumbai-based Perplexity Alternative Has 60k+ Users Without Funding
-
Mergers & Acquisitions1 week ago
Donald Trump suggests US government review subsidies to Elon Musk’s companies
-
Funding & Business7 days ago
Rethinking Venture Capital’s Talent Pipeline
-
Jobs & Careers7 days ago
Why Agentic AI Isn’t Pure Hype (And What Skeptics Aren’t Seeing Yet)
-
Funding & Business4 days ago
Sakana AI’s TreeQuest: Deploy multi-model teams that outperform individual LLMs by 30%
-
Jobs & Careers7 days ago
Telangana Launches TGDeX—India’s First State‑Led AI Public Infrastructure
-
Funding & Business1 week ago
From chatbots to collaborators: How AI agents are reshaping enterprise work
-
Jobs & Careers7 days ago
Astrophel Aerospace Raises ₹6.84 Crore to Build Reusable Launch Vehicle
-
Funding & Business5 days ago
HOLY SMOKES! A new, 200% faster DeepSeek R1-0528 variant appears from German lab TNG Technology Consulting GmbH