Connect with us

Jobs & Careers

ElevenLabs CEO Says AI Speech May Pass Turing Test This Year

Published

on


ElevenLabs is working to make voice AI indistinguishable from human conversation, with its CEO, Mati Staniszewski, stating the company may cross the Turing test threshold this year or in early 2026. The test determines a machine’s ability to exhibit human-like intelligence.

“We would love to prove that it’s possible this year,” Staniszewski said in a recent interview. “You can cross the Turing test of speaking with an agent, and you just would say this is like speaking with another human.”

The company is currently using a cascading architecture, separating speech-to-text, language generation, and text-to-speech, but is preparing to shift to a unified duplex model. “Soon, the one we’ll deploy will be a truly duplex model,” he said.

According to Staniszewski, the key trade-off lies between expressiveness and reliability. “The true duplex model will always be quicker, a little bit more expressive, but less reliable,” he said. “The cascaded model is definitely more reliable…but maybe not as contextually responsive.”

Latency, too, remains a challenge. “I think we can get pretty good latency on both sides,” Staniszewski noted, while acknowledging that integrating audio with large language models at production scale has yet to be solved. “No company has been able to do it well…I hope we’ll be the first one.”

Citing ongoing work by Meta and OpenAI in the same space, he said, “I don’t think it passed the Turing test yet.”

The CEO also reaffirmed his belief that voice will become a primary interface for interacting with technology, signalling a shift in how users may engage with software in the near future.

The company recently launched the alpha version of its new flagship text-to-speech model, Eleven v3, which the company claims is its most expressive model to date. The release introduces inline audio controls, dialogue generation, and support for over 70 languages, targeting creators in film, gaming, audiobooks, and accessibility.



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Jobs & Careers

Capgemini to Acquire WNS for $3.3 Billion with Focus on Agentic AI

Published

on


Capgemini has announced a definitive agreement to acquire WNS, a mid-sized Indian IT firm, for $3.3 billion in cash. This marks a significant step towards establishing a global leadership position in agentic AI.

The deal, unanimously approved by the boards of both companies, values WNS at $76.50 per share—a premium of 28% over the 90-day average and 17% above the July 3 closing price.

The acquisition is expected to immediately boost Capgemini’s revenue growth and operating margin, with normalised EPS accretion of 4% by 2026, increasing to 7% post-synergies in 2027.

“Enterprises are rapidly adopting generative AI and agentic AI to transform their operations end-to-end. Business process services (BPS) will be the showcase for agentic AI,” Aiman Ezzat, CEO of Capgemini, said. 

“Capgemini’s acquisition of WNS will provide the group with the scale and vertical sector expertise to capture that rapidly emerging strategic opportunity created by the paradigm shift from traditional BPS to agentic AI-powered intelligent operations.”

Pending regulatory approvals, the transaction is expected to close by the end of 2025.

WNS’ integration is expected to strengthen Capgemini’s presence in the US market while unlocking immediate cross-selling opportunities through its combined offerings and clientele. 

WNS, which reported $1.27 billion in revenue for FY25 with an 18.7% operating margin, has consistently delivered a revenue growth of around 9% over the past three fiscal years.

“As a recognised leader in the digital BPS space, we see the next wave of transformation being driven by intelligent, domain-centric operations that unlock strategic value for our clients,” Keshav R Murugesh, CEO of WNS, said. “Organisations that have already digitised are now seeking to reimagine their operating models by embedding AI at the core—shifting from automation to autonomy.”

The companies expect to drive additional revenue synergies between €100 million and €140 million, with cost synergies of up to €70 million annually by the end of 2027. 

“WNS and Capgemini share a bold, future-focused vision for Intelligent Operations. I’m confident that Capgemini is the ideal partner at the right time in WNS’ journey,” Timothy L Main, chairman of WNS’ board of directors, said.

Capgemini, already a major player with over €900 million in GenAI bookings in 2024 and strategic partnerships with Microsoft, Google, AWS, Mistral AI, and NVIDIA, aims to solidify its position as a transformation partner for businesses looking to embed agentic AI at scale.



Source link

Continue Reading

Jobs & Careers

Piyush Goyal Announces Second Tranche of INR 10,000 Cr Deep Tech Fund

Published

on


IIT Madras and its alumni association (IITMAA) held the sixth edition of their global innovation and alumni summit, ‘Sangam 2025’, in Bengaluru on 4 and 5 July. The event brought together over 500 participants, including faculty, alumni, entrepreneurs, investors and students.

Union Commerce and Industry Minister Shri Piyush Goyal, addressing the summit, announced a second tranche of ₹10,000 crore under the government’s ‘Fund of Funds’, this time focused on supporting India’s deep tech ecosystem. “This money goes to promote innovation, absorption of newer technologies and development of contemporary fields,” he said. 

The Minister added that guidelines for the fund are currently being finalised, to direct capital to strengthen the entire technology lifecycle — from early-stage research through to commercial deployment, not just startups.. 

He also referred to the recent Cabinet decision approving $12 billion (₹1 lakh crore) for the Department of Science and Technology in the form of a zero-interest 50-year loan. “It gives us more flexibility to provide equity support, grant support, low-cost support and roll that support forward as technologies get fine-tuned,” he said.

Goyal said the government’s push for indigenous innovation stems from cost advantages as well. “When we work on new technologies in India, our cost is nearly one-sixth, one-seventh of what it would cost in Switzerland or America,” he said.

The Minister underlined the government’s focus on emerging technologies such as artificial intelligence, machine learning, and data analytics. “Today, our policies are structured around a future-ready India… an India that is at the forefront of Artificial Intelligence, Machine Learning, computing and data analytics,” he said.

He also laid out a growth trajectory for the Indian economy. “From the 11th largest GDP in the world, we are today the fifth largest. By the end of Calendar year 2025, or maybe anytime during the year, we will be the fourth-largest GDP in the world. By 2027, we will be the third largest,” Goyal said.

Sangam 2025 featured a pitch fest that saw 20 deep tech and AI startups present to over 250 investors and venture capitalists. Selected startups will also receive institutional support from the IIT Madras Innovation Ecosystem, which has incubated over 500 ventures in the last decade.

Key speakers included Aparna Chennapragada (Chief Product Officer, Microsoft), Srinivas Narayanan (VP Engineering, OpenAI), and Tarun Mehta (Co-founder and CEO, Ather Energy), all IIT Madras alumni. The summit also hosted Kris Gopalakrishnan (Axilor Ventures, Infosys), Dr S. Somanath (former ISRO Chairman) and Bengaluru South MP Tejasvi Surya.

Prof. V. Kamakoti, Director, IIT Madras, said, “IIT Madras is committed to playing a pivotal role in shaping ‘Viksit Bharat 2047’. At the forefront of its agenda are innovation and entrepreneurship, which are key drivers for National progress.”

Ms. Shyamala Rajaram, President of IITMAA, said, “Sangam 2025 is a powerful confluence of IIT Madras and its global alumni — sparking bold conversations on innovation and entrepreneurship.”

Prof. Ashwin Mahalingam, Dean (Alumni and Corporate Relations), IIT Madras, added, “None of this would be possible without the unwavering support of our alumni community. Sangam 2025 embodies the strength of that network.”



Source link

Continue Reading

Jobs & Careers

Serve Machine Learning Models via REST APIs in Under 10 Minutes

Published

on


SServe Machine Learning Models via REST APIs in Under 10 Minutes
Image by Author | Canva

 

If you like building machine learning models and experimenting with new stuff, that’s really cool — but to be honest, it only becomes useful to others once you make it available to them. For that, you need to serve it — expose it through a web API so that other programs (or humans) can send data and get predictions back. That’s where REST APIs come in.

In this article, you will learn how we’ll go from a simple machine learning model to a production-ready API using FastAPI, one of Python’s fastest and most developer-friendly web frameworks, in just under 10 minutes. And we won’t just stop at a “make it run” demo, but we will add things like:

  • Validating incoming data
  • Logging every request
  • Adding background tasks to avoid slowdowns
  • Gracefully handling errors

So, let me just quickly show you how our project structure is going to look before we move to the code part:

ml-api/
│
├── model/
│   └── train_model.py        # Script to train and save the model
│   └── iris_model.pkl        # Trained model file
│
├── app/
│   └── main.py               # FastAPI app
│   └── schema.py             # Input data schema using Pydantic
│
├── requirements.txt          # All dependencies
└── README.md                 # Optional documentation

 

Step 1: Install What You Need

 
We’ll need a few Python packages for this project: FastAPI for the API, Scikit-learn for the model, and a few helpers like joblib and pydantic. You can install them using pip:

pip install fastapi uvicorn scikit-learn joblib pydantic

 

And save your environment:

pip freeze > requirements.txt

 

Step 2: Train and Save a Simple Model

 
Let’s keep the machine learning part simple so we can focus on serving the model. We’ll use the famous Iris dataset and train a random forest classifier to predict the type of iris flower based on its petal and sepal measurements.

Here’s the training script. Create a file called train_model.py in a model/ directory:

from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import joblib, os

X, y = load_iris(return_X_y=True)
clf = RandomForestClassifier()
clf.fit(*train_test_split(X, y, test_size=0.2, random_state=42)[:2])

os.makedirs("model", exist_ok=True)
joblib.dump(clf, "model/iris_model.pkl")
print("✅ Model saved to model/iris_model.pkl")

 

This script loads the data, splits it, trains the model, and saves it using joblib. Run it once to generate the model file:

python model/train_model.py

 

Step 3: Define What Input Your API Should Expect

 
Now we need to define how users will interact with your API. What should they send, and in what format?

We’ll use Pydantic, a built-in part of FastAPI, to create a schema that describes and validates incoming data. Specifically, we’ll ensure that users provide four positive float values — for sepal length/width and petal length/width.

In a new file app/schema.py, add:

from pydantic import BaseModel, Field

class IrisInput(BaseModel):
    sepal_length: float = Field(..., gt=0, lt=10)
    sepal_width: float = Field(..., gt=0, lt=10)
    petal_length: float = Field(..., gt=0, lt=10)
    petal_width: float = Field(..., gt=0, lt=10)

 

Here, we’ve added value constraints (greater than 0 and less than 10) to keep our inputs clean and realistic.

 

Step 4: Create the API

 
Now it’s time to build the actual API. We’ll use FastAPI to:

  • Load the model
  • Accept JSON input
  • Predict the class and probabilities
  • Log the request in the background
  • Return a clean JSON response

Let’s write the main API code inside app/main.py:

from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.responses import JSONResponse
from app.schema import IrisInput
import numpy as np, joblib, logging

# Load the model
model = joblib.load("model/iris_model.pkl")

# Set up logging
logging.basicConfig(filename="api.log", level=logging.INFO,
                    format="%(asctime)s - %(message)s")

# Create the FastAPI app
app = FastAPI()

@app.post("/predict")
def predict(input_data: IrisInput, background_tasks: BackgroundTasks):
    try:
        # Format the input as a NumPy array
        data = np.array([[input_data.sepal_length,
                          input_data.sepal_width,
                          input_data.petal_length,
                          input_data.petal_width]])
        
        # Run prediction
        pred = model.predict(data)[0]
        proba = model.predict_proba(data)[0]
        species = ["setosa", "versicolor", "virginica"][pred]

        # Log in the background so it doesn’t block response
        background_tasks.add_task(log_request, input_data, species)

        # Return prediction and probabilities
        return {
            "prediction": species,
            "class_index": int(pred),
            "probabilities": {
                "setosa": float(proba[0]),
                "versicolor": float(proba[1]),
                "virginica": float(proba[2])
            }
        }

    except Exception as e:
        logging.exception("Prediction failed")
        raise HTTPException(status_code=500, detail="Internal error")

# Background logging task
def log_request(data: IrisInput, prediction: str):
    logging.info(f"Input: {data.dict()} | Prediction: {prediction}")

 

Let’s pause and understand what’s happening here.

We load the model once when the app starts. When a user hits the /predict endpoint with valid JSON input, we convert that into a NumPy array, pass it through the model, and return the predicted class and probabilities. If something goes wrong, we log it and return a friendly error.

Notice the BackgroundTasks part — this is a neat FastAPI feature that lets us do work after the response is sent (like saving logs). That keeps the API responsive and avoids delays.

 

Step 5: Run Your API

 
To launch the server, use uvicorn like this:

uvicorn app.main:app --reload

 

Visit: http://127.0.0.1:8000/docs
You’ll see an interactive Swagger UI where you can test the API.
Try this sample input:

{
  "sepal_length": 6.1,
  "sepal_width": 2.8,
  "petal_length": 4.7,
  "petal_width": 1.2
}

 

or you can use CURL to make the request like this:

curl -X POST "http://127.0.0.1:8000/predict" -H  "Content-Type: application/json" -d \
'{
  "sepal_length": 6.1,
  "sepal_width": 2.8,
  "petal_length": 4.7,
  "petal_width": 1.2
}'

 

Both of the them generates the same response which is this:

{"prediction":"versicolor",
 "class_index":1,
 "probabilities": {
	 "setosa":0.0,
	 "versicolor":1.0,
	 "virginica":0.0 }
 }

 

Optional Step: Deploy Your API

 
You can deploy the FastAPI app on:

  • Render.com (zero config deployment)
  • Railway.app (for continuous integration)
  • Heroku (via Docker)

You can also extend this into a production-ready service by adding authentication (such as API keys or OAuth) to protect your endpoints, monitoring requests with Prometheus and Grafana, and using Redis or Celery for background job queues. You can also refer to my article : Step-by-Step Guide to Deploying Machine Learning Models with Docker.

 

Wrapping Up

 
That’s it — and it’s already better than most demos. What we’ve built is more than just a toy example. However, it:

  • Validates input data automatically
  • Returns meaningful responses with prediction confidence
  • Logs every request to a file (api.log)
  • Uses background tasks so the API stays fast and responsive
  • Handles failures gracefully

And all of it in under 100 lines of code.
 
 

Kanwal Mehreen Kanwal is a machine learning engineer and a technical writer with a profound passion for data science and the intersection of AI with medicine. She co-authored the ebook “Maximizing Productivity with ChatGPT”. As a Google Generation Scholar 2022 for APAC, she champions diversity and academic excellence. She’s also recognized as a Teradata Diversity in Tech Scholar, Mitacs Globalink Research Scholar, and Harvard WeCode Scholar. Kanwal is an ardent advocate for change, having founded FEMCodes to empower women in STEM fields.



Source link

Continue Reading

Trending