Connect with us

AI Research

Data and AI sovereignty: A universal business imperative grounded in two unifying rules

Published

on


More than 10,000 of the world’s 34,500 large enterprises—nearly 30%—have already committed to becoming their own data and AI platforms. And within just three years, over 95% of global enterprises say they want to do the same, regardless of where they operate—from Japan and India to the US, EMEA, and MEA. This isn’t just a regional trend. It’s a global imperative. And it’s accelerating.

While the first three waves of digital transformation took a decade or more to reshape industries, the agentic revolution may unfold in less than three years. That’s not just speculation—it’s the view of 2,050 executive leaders across 13 economies surveyed in our 2025 global study. Their consensus is clear: the time to act is now.

This is a tale of two futures. For the 13% of enterprises already getting it right, the advantages are profound. They report five times the ROI of their peers and are deploying agentic and generative AI capabilities at twice the scale. Perhaps more tellingly, these leaders are 250% more confident in their ability to remain at the forefront of their industries over the next three years. Their platform choices are not just strategic—they’re producing measurable economic outcomes.

Meanwhile, the other 87% aren’t necessarily struggling—but they are behind. Their return on AI investment is, at best, a fraction of what the leaders are generating. At worst, they’re five times less productive, still reliant on legacy infrastructure, and unable to meet the rising expectations of customers, regulators, and shareholders.

The conviction to move toward sovereign data and AI infrastructure is shared across the globe. Leading enterprises in Scandinavia, the United States, Saudi Arabia, the UAE, and Japan are rapidly building their own platforms. And among the 13% of high performers, the highest concentration of success stories is emerging in Germany, Saudi Arabia, the UAE, and the US. These regions are showing us what’s working—and why.

Rule one: Mission-critical sovereignty enables scalable agentic AI

What distinguishes the 13% is not just what they do, but how they think. Nearly 90% of these organizations share one defining mindset: they see sovereignty over their AI and data as mission-critical. They believe that all their data—structured and unstructured—must be accessible in real time, regardless of where it’s stored. They prioritize eliminating silos, enforcing compliance, and creating an environment where data and AI can work together seamlessly.

This belief isn’t theoretical—it’s validated. In our research, across more than 15,000 simulations that combined 15 agentic and GenAI capabilities with seven economic metrics and 35 data infrastructure variables, the organizations that focused on real-time sovereign access and control consistently outperformed. Statistically, this pattern of success showed an exceptionally high predictive score (CHAID and regression: 0.982), confirming that this mindset isn’t just useful—it’s essential.

These leaders aren’t treating AI and data as separate disciplines—they’ve fused them into a single, sovereign engine that fuels operations across more than a dozen business areas. They’ve built platforms that don’t care where the data lives because the design ensures access, security, compliance, and scale. And as a result, they’re moving faster, innovating more, and outpacing competitors.

Every day, an average of 58 new enterprises begin this transition. That’s the scale of change we’re witnessing. The question for those not yet moving is simple: do you have the infrastructure—and the mindset—to thrive?

Rule two: Compliance, observability, security, and agility must be designed in

Sovereignty isn’t just about ownership. It’s about architecture. The most successful organizations don’t just talk about sovereignty—they’ve engineered it across four interdependent layers: compliance, observability, security, and agility.

They’ve built environments where AI can interact with the real world without compromising data integrity or breaching regulatory obligations. Financial forecasting agents, for example, need to pull from CRM, customer experience, sales funnel, ledger data, and external benchmarks. Edge agents may need to ingest signals from vehicles, sensors, or telecom infrastructure. Sovereign AI requires the infrastructure to support all of this in a unified, compliant way.

Among the deeply committed, over 40% operate on a truly hybrid infrastructure—one that supports full observability across environments, from cloud to on-prem, and delivers centralized control through a single pane of glass. This allows them to respond to competitive threats, regulatory changes, and customer demands simultaneously. They’ve reduced reliance on global infrastructure providers, built flexibility into their architectures, and are realizing more than double the innovation and efficiency gains of their peers.

These are not abstract advantages. These are measurable business outcomes that compound over time—what many refer to as the sovereignty flywheel. When you have unified control, innovation becomes faster. When compliance is built in, agility increases. When observability is complete, optimization becomes constant. And when security is inherent, trust becomes an asset.

This is why the sovereignty movement is growing so quickly. It’s not just the right thing to do. It’s the profitable thing to do.

Redefining success in the agentic and gen AI era

What’s happening is a global migration—not just to AI—but to sovereign AI. More than ever, enterprises are realizing that just “having” AI isn’t enough. Real success comes from owning the infrastructure, the data, and the intelligence end-to-end.

Open source platforms like PostgreSQL are powering this shift. Flexible, hybrid, and battle-tested, Postgres is enabling enterprises to unify AI and data across environments, accelerate their sovereignty strategies, and build resilient systems that scale.

Because at the end of the day, just anything isn’t data and AI sovereignty. Building the right architecture, with the right mindset and the right principles—that’s the definition of success in a world where AI is no longer optional.

The race is on. The winners are emerging. And the rules are now clear.

To learn more about EDB, visit here.



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

AI Research

MAIA platform for routine clinical testing: an artificial intelligence embryo selection tool developed to assist embryologists

Published

on


  • Graham, M. E. et al. Assisted reproductive technology: Short- and long-term outcomes. Dev. Med. Child. Neurol. 65, 38–49 (2023).

    PubMed 

    Google Scholar
     

  • Jiang, V. S. & Bormann, C. L. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil. Steril. 120, 17–23 (2023).

    PubMed 

    Google Scholar
     

  • Devine, K. et al. Single vitrified blastocyst transfer maximizes liveborn children per embryo while minimizing preterm birth. Fertil. Steril. 103, 1454–1460 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiitinen, A. Single embryo transfer: why and how to identify the embryo with the best developmental potential. Best Pract. Res. Clin. Endocrinol. Metab. 33, 77–88 (2019).

    PubMed 

    Google Scholar
     

  • Glatstein, I., Chavez-Badiola, A. & Curchoe, C. L. New frontiers in embryo selection. J. Assist. Reprod. Genet. 40, 223–234 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, D. K. & Schoolcraft, W. B. Culture and transfer of human blastocysts. Curr. Opin. Obstet. Gynaecol. 11, 307–311 (1999).


    Google Scholar
     

  • Sciorio, R. & Meseguer, M. Focus on time-lapse analysis: blastocyst collapse and morphometric assessment as new features of embryo viability. Reprod. BioMed. Online. 43, 821–832 (2021).

    PubMed 

    Google Scholar
     

  • Sundvall, L., Ingerslev, H. J., Knudsen, U. B. & Kirkegaard, K. Inter- and intra-observer variability of time-lapse annotations. Hum. Reprod. 28, 3215–3221 (2013).

    PubMed 

    Google Scholar
     

  • Gallego, R. D., Remohí, J. & Meseguer, M. Time-lapse imaging: the state of the Art. Biol. Reprod. 101, 1146–1154 (2019).

    PubMed 

    Google Scholar
     

  • VerMilyea, M. D. et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod. Biomed. Online. 29, 729–736 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chéles, D. S., Molin, E. A. D., Rocha, J. C. & Nogueira, M. F. G. Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: an approach to predict the live birth in the assisted reproduction service. JBRA Assist. Reprod. 24, 470–479 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha, C., Nogueira, M. G., Zaninovic, N. & Hickman, C. Is AI assessment of morphokinetic data and digital image analysis from time-lapse culture predictive of implantation potential of human embryos? Fertil. Steril. 110, e373 (2018).


    Google Scholar
     

  • Zaninovic, N. et al. Application of artificial intelligence technology to increase the efficacy of embryo selection and prediction of live birth using human blastocysts cultured in a time-lapse incubator. Fertil. Steril. 110, e372–e373 (2018).


    Google Scholar
     

  • Alegre, L. et al. First application of artificial neuronal networks for human live birth prediction on Geri time-lapse monitoring system blastocyst images. Fertil. Steril. 114, e140 (2020).


    Google Scholar
     

  • Bori, L. et al. An artificial intelligence model based on the proteomic profile of euploid embryos and blastocyst morphology: a preliminary study. Reprod. BioMed. Online. 42, 340–350 (2021).

    PubMed 

    Google Scholar
     

  • Chéles, D. S. et al. An image processing protocol to extract variables predictive of human embryo fitness for assisted reproduction. Appl. Sci. 12, 3531 (2022).


    Google Scholar
     

  • Jacobs, C. K. et al. Embryologists versus artificial intelligence: predicting clinical pregnancy out of a transferred embryo who performs it better? Fertil. Steril. 118, e81–e82 (2022).


    Google Scholar
     

  • Lorenzon, A. et al. P-211 development of an artificial intelligence software with consistent laboratory data from a single IVF center: performance of a new interface to predict clinical pregnancy. Hum. Reprod. 39, deae108.581 (2024).

  • Fernandez, E. I. et al. Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. J. Assist. Reprod. Genet. 37, 2359–2376 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendizabal-Ruiz, G. et al. Computer software (SiD) assisted real-time single sperm selection associated with fertilization and blastocyst formation. Reprod. BioMed. Online. 45, 703–711 (2022).

    PubMed 

    Google Scholar
     

  • Fjeldstad, J. et al. Segmentation of mature human oocytes provides interpretable and improved blastocyst outcome predictions by a machine learning model. Sci. Rep. 14, 10569 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khosravi, P. et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit. Med. 2, 21 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickman, C. et al. Inner cell mass surface area automatically detected using Chloe eq™(fairtility), an ai-based embryology support tool, is associated with embryo grading, embryo ranking, ploidy and live birth outcome. Fertil. Steril. 118, e79 (2022).


    Google Scholar
     

  • Tran, D., Cooke, S., Illingworth, P. J. & Gardner, D. K. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum. Reprod. 34, 1011–1018 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajendran, S. et al. Automatic ploidy prediction and quality assessment of human blastocysts using time-lapse imaging. Nat. Commun. 15, 7756 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bormann, C. L. et al. Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil. Steril. 113, 781–787e1 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kragh, M. F. & Karstoft, H. Embryo selection with artificial intelligence: how to evaluate and compare methods? J. Assist. Reprod. Genet. 38, 1675–1689 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cromack, S. C., Lew, A. M., Bazzetta, S. E., Xu, S. & Walter, J. R. The perception of artificial intelligence and infertility care among patients undergoing fertility treatment. J. Assist. Reprod. Genet. https://doi.org/10.1007/s10815-024-03382-5 (2025).

    PubMed 

    Google Scholar
     

  • Fröhlich, H. et al. From hype to reality: data science enabling personalized medicine. BMC Med. 16, 150 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J. et al. External validation of a model for selecting day 3 embryos for transfer based upon deep learning and time-lapse imaging. Reprod. BioMed. Online. 47, 103242 (2023).

    PubMed 

    Google Scholar
     

  • Yelke, H. K. et al. O-007 Simplifying the complexity of time-lapse decisions with AI: CHLOE (Fairtility) can automatically annotate morphokinetics and predict blastulation (at 30hpi), pregnancy and ongoing clinical pregnancy. Hum. Reprod. 37, deac104.007 (2022).

  • Papatheodorou, A. et al. Clinical and practical validation of an end-to-end artificial intelligence (AI)-driven fertility management platform in a real-world clinical setting. Reprod. BioMed. Online. 45, e44–e45 (2022).


    Google Scholar
     

  • Salih, M. et al. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum. Reprod. Open hoad031 (2023).

  • Nunes, K. et al. Admixture’s impact on Brazilian population evolution and health. Science. 388(6748), eadl3564 (2025).

  • Jackson-Bey, T. et al. Systematic review of Racial and ethnic disparities in reproductive endocrinology and infertility: where do we stand today? F&S Reviews. 2, 169–188 (2021).


    Google Scholar
     

  • Kassi, L. A. et al. Body mass index, not race, May be associated with an alteration in early embryo morphokinetics during in vitro fertilization. J. Assist. Reprod. Genet. 38, 3091–3098 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pena, S. D. J., Bastos-Rodrigues, L., Pimenta, J. R. & Bydlowski, S. P. DNA tests probe the genomic ancestry of Brazilians. Braz J. Med. Biol. Res. 42, 870–876 (2009).

    PubMed 

    Google Scholar
     

  • Fraga, A. M. et al. Establishment of a Brazilian line of human embryonic stem cells in defined medium: implications for cell therapy in an ethnically diverse population. Cell. Transpl. 20, 431–440 (2011).


    Google Scholar
     

  • Amin, F. & Mahmoud, M. Confusion matrix in binary classification problems: a step-by-step tutorial. J. Eng. Res. 6, 0–0 (2022).


    Google Scholar
     

  • Magdi, Y. et al. Effect of embryo selection based morphokinetics on IVF/ICSI outcomes: evidence from a systematic review and meta-analysis of randomized controlled trials. Arch. Gynecol. Obstet. 300, 1479–1490 (2019).

    PubMed 

    Google Scholar
     

  • Guo, Y. H., Liu, Y., Qi, L., Song, W. Y. & Jin, H. X. Can time-lapse incubation and monitoring be beneficial to assisted reproduction technology outcomes? A randomized controlled trial using day 3 double embryo transfer. Front. Physiol. 12, 794601 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giménez, C., Conversa, L., Murria, L. & Meseguer, M. Time-lapse imaging: morphokinetic analysis of in vitro fertilization outcomes. Fertil. Steril. 120, 228–227 (2023).


    Google Scholar
     

  • Vitrolife EmbryoScope + time-lapse system. (2023). https://www.vitrolife.com/products/time-lapse-systems/embryoscopeplus-time-lapse-system/.

  • Lagalla, C. et al. A quantitative approach to blastocyst quality evaluation: morphometric analysis and related IVF outcomes. J. Assist. Reprod. Genet. 32, 705–712 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha, J. C. et al. A method based on artificial intelligence to fully automatize the evaluation of bovine blastocyst images. Sci. Rep. 7, 7659 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chavez-Badiola, A. et al. Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning. Sci. Rep. 10, 4394 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matos, F. D., Rocha, J. C. & Nogueira, M. F. G. A method using artificial neural networks to morphologically assess mouse blastocyst quality. J. Anim. Sci. Technol. 56, 15 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S., Zhou, C., Zhang, D., Chen, L. & Sun, H. A deep learning framework design for automatic blastocyst evaluation with multifocal images. IEEE Access. 9, 18927–18934 (2021).


    Google Scholar
     

  • Berntsen, J., Rimestad, J., Lassen, J. T., Tran, D. & Kragh, M. F. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences. PLoS One. 17, e0262661 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fruchter-Goldmeier, Y. et al. An artificial intelligence algorithm for automated blastocyst morphometric parameters demonstrates a positive association with implantation potential. Sci. Rep. 13, 14617 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Illingworth, P. J. et al. Deep learning versus manual morphology-based embryo selection in IVF: a randomized, double-blind noninferiority trial. Nat. Med. 30, 3114–3120 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanakasabapathy, M. K. et al. Development and evaluation of inexpensive automated deep learning-based imaging systems for embryology. Lab. Chip. 19, 4139–4145 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loewke, K. et al. Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos. Fertil. Steril. 117, 528–535 (2022).

    PubMed 

    Google Scholar
     

  • Hengstschläger, M. Artificial intelligence as a door opener for a new era of human reproduction. Hum. Reprod. Open hoad043 (2023).

  • Lassen Theilgaard, J., Fly Kragh, M., Rimestad, J., Nygård Johansen, M. & Berntsen, J. Development and validation of deep learning based embryo selection across multiple days of transfer. Sci. Rep. 13 (1), 4235 (2023).

    ADS 

    Google Scholar
     

  • Lozano, M. et al. P-301 Assessment of ongoing clinical outcomes prediction of an AI system on retrospective SET data, Human Reprod. 38(Issue Supplement_1), dead093.659. (2023).

  • Collins, G. S. et al. TRIPOD + AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 385, e078378 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdolrasol, M. G. M. et al. Artificial neural networks based optimization techniques: a review. Electronics 10, 2689 (2021).


    Google Scholar
     

  • Yuzer, E. O. & Bozkurt, A. Instant solar irradiation forecasting for solar power plants using different ANN algorithms and network models. Electr. Eng. 106, 3671–3689 (2024).


    Google Scholar
     

  • Guariso, G. & Sangiorgio, M. Improving the performance of multiobjective genetic algorithms: an elitism-based approach. Information 11, 587 (2020).


    Google Scholar
     

  • García-Pascual, C. M. et al. Optimized NGS approach for detection of aneuploidies and mosaicism in PGT-A and imbalances in PGT-SR. Genes 11, 724 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Continue Reading

    AI Research

    UCLA Researchers Enable Paralyzed Patients to Control Robots with Thoughts Using AI – CHOSUNBIZ – Chosun Biz

    Published

    on



    UCLA Researchers Enable Paralyzed Patients to Control Robots with Thoughts Using AI – CHOSUNBIZ  Chosun Biz



    Source link

    Continue Reading

    AI Research

    Hackers exploit hidden prompts in AI images, researchers warn

    Published

    on


    Cybersecurity firm Trail of Bits has revealed a technique that embeds malicious prompts into images processed by large language models (LLMs). The method exploits how AI platforms compress and downscale images for efficiency. While the original files appear harmless, the resizing process introduces visual artifacts that expose concealed instructions, which the model interprets as legitimate user input.

    In tests, the researchers demonstrated that such manipulated images could direct AI systems to perform unauthorized actions. One example showed Google Calendar data being siphoned to an external email address without the user’s knowledge. Platforms affected in the trials included Google’s Gemini CLI, Vertex AI Studio, Google Assistant on Android, and Gemini’s web interface.

    Read More: Meta curbs AI flirty chats, self-harm talk with teens

    The approach builds on earlier academic work from TU Braunschweig in Germany, which identified image scaling as a potential attack surface in machine learning. Trail of Bits expanded on this research, creating “Anamorpher,” an open-source tool that generates malicious images using interpolation techniques such as nearest neighbor, bilinear, and bicubic resampling.

    From the user’s perspective, nothing unusual occurs when such an image is uploaded. Yet behind the scenes, the AI system executes hidden commands alongside normal prompts, raising serious concerns about data security and identity theft. Because multimodal models often integrate with calendars, messaging, and workflow tools, the risks extend into sensitive personal and professional domains.

    Also Read: Nvidia CEO Jensen Huang says AI boom far from over

    Traditional defenses such as firewalls cannot easily detect this type of manipulation. The researchers recommend a combination of layered security, previewing downscaled images, restricting input dimensions, and requiring explicit confirmation for sensitive operations.

    “The strongest defense is to implement secure design patterns and systematic safeguards that limit prompt injection, including multimodal attacks,” the Trail of Bits team concluded.



    Source link

    Continue Reading

    Trending