Britton, R. A. et al. Taking microbiome science to the next level: recommendations to advance the emerging field of microbiome-based therapeutics and diagnostics. Gastroenterology 167, 1059–1064 (2024).
CAS
Google Scholar
Gerber, G. K. AI in microbiome research: where have we been, where are we going? Cell Host Microbe 32, 1230–1234 (2024).
CAS
Google Scholar
Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinforma. 3, lqab019 (2021).
Google Scholar
Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA 82, 6955–6959 (1985).
CAS
Google Scholar
Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).
CAS
Google Scholar
Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).
CAS
Google Scholar
Zhang, C. et al. Identification of low abundance microbiome in clinical samples using whole genome sequencing. Genome Biol. 16, 265 (2015).
CAS
Google Scholar
Shanahan, F., Ghosh, T. S. & O’Toole, P. W. Human microbiome variance is underestimated. Curr. Opin. Microbiol. 73, 102288 (2023).
Google Scholar
He, Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532–1535 (2018).
CAS
Google Scholar
Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).
CAS
Google Scholar
de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 (2018).
Google Scholar
Whelan, F. J. et al. Culture-enriched metagenomic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. Nat. Microbiol. 5, 379–390 (2020).
CAS
Google Scholar
Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).
Google Scholar
McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).
Google Scholar
Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).
CAS
Google Scholar
Santiago, A. et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol. 14, 112 (2014).
Google Scholar
Dore, J. E. et al. IHMS_SOP 06 V1: standard operating procedure for fecal samples DNA extraction, Protocol Q. International Human Microbiome Standards https://brd.nci.nih.gov/brd/sop/download-pdf/2525 (2015).
Alcock, B. P. et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 51, D690–D699 (2023).
CAS
Google Scholar
Spahn, C. et al. DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Commun. Biol. 5, 688 (2022).
Google Scholar
Schloss, P. D. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio 9, e00525–18 (2018).
Google Scholar
Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).
CAS
Google Scholar
Willis, A. D. & Clausen, D. S. Planning and describing a microbiome data analysis. Nat. Microbiol. 10, 604–607 (2025).
CAS
Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).
Google Scholar
Valles-Colomer, M., Falony, G., Vieira-Silva, S. & Raes, J. Practical guidelines for gut microbiome analysis in microbiota-gut-brain axis research. Behav. Brain Sci. 42, e78 (2019).
Google Scholar
Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).
CAS
Google Scholar
Llorens-Rico, V., Vieira-Silva, S., Goncalves, P. J., Falony, G. & Raes, J. Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases. Nat. Commun. 12, 3562 (2021).
CAS
Google Scholar
Stammler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).
Google Scholar
Tang, G. et al. Metagenomic estimation of absolute bacterial biomass in the mammalian gut through host-derived read normalization. Preprint at BioRxiv https://doi.org/10.1101/2025.01.07.631807 (2025).
Google Scholar
McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and correctable bias in metagenomic sequencing experiments. eLife 8, e46923 (2019).
Google Scholar
Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259.e14 (2019).
CAS
Google Scholar
Abdill, R. J. et al. Integration of 168,000 samples reveals global patterns of the human gut microbiome. Cell 188, 1100–1118.e17 (2025).
CAS
Google Scholar
Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).
CAS
Google Scholar
Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).
CAS
Google Scholar
Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature 587, 448–454 (2020).
CAS
Google Scholar
Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).
CAS
Google Scholar
Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Primers 2, https://doi.org/10.1038/s43586-021-00092-5 (2022).
Google Scholar
Liu, X. et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat. Genet. 54, 52–61 (2022).
CAS
Google Scholar
Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L. V., Jarmusch, A. K. & Dorrestein, P. C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 20, 143–160 (2022).
CAS
Google Scholar
Aksenov, A. A., da Silva, R., Knight, R., Lopes, N. P. & Dorrestein, P. C. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem. 1, 0054 (2017).
CAS
Google Scholar
Wang, M. et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 38, 23–26 (2020).
Google Scholar
Galipeau, H. J. et al. Novel fecal biomarkers that precede clinical diagnosis of ulcerative colitis. Gastroenterology 160, 1532–1545 (2021).
CAS
Google Scholar
Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681 (2020).
CAS
Google Scholar
Saarenpaa, S. et al. Spatial metatranscriptomics resolves host-bacteria-fungi interactomes. Nat. Biotechnol. 42, 1384–1393 (2024).
Google Scholar
Miller, G. A. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956).
CAS
Google Scholar
Kline, R. Cybernetics, automata studies, and the dartmouth conference on artificial intelligence. IEEE Ann. Hist. Comput. 33, 5–16 (2011).
Google Scholar
Lambert, A., Budinich, M., Mahé, M., Chaffron, S. & Eveillard, D. Community metabolic modeling of host-microbiota interactions through multi-objective optimization. iScience 27, 110092 (2024).
Google Scholar
van der Ark, K. C. H., van Heck, R. G. A., Martins Dos Santos, V. A. P., Belzer, C. & de Vos, W. M. More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes. Microbiome 5, 78 (2017).
Google Scholar
Huang, B. D., Groseclose, T. M. & Wilson, C. J. Transcriptional programming in a bacteroides consortium. Nat. Commun. 13, 3901 (2022).
CAS
Google Scholar
van der Maaten, L. H. & Visualizing, G. Data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Google Scholar
McInnes, L., Healy, J., Saul, H. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
Google Scholar
Smyth, J. et al. Microbiome-based colon cancer patient stratification and survival analysis. Cancer Med. 13, e70434 (2024).
CAS
Google Scholar
Mao, J. & Ma, L. I. Dirichlet-tree multinomial mixtures for clustering microbiome compositions. Ann. Appl. Stat. 16, 1476–1499 (2022).
Google Scholar
Holmes, I., Harris, K. & Quince, C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS One 7, e30126 (2012).
CAS
Google Scholar
Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).
Google Scholar
Hua, J., Xiong, Z., Lowey, J., Suh, E. & Dougherty, E. R. Optimal number of features as a function of sample size for various classification rules. Bioinformatics 21, 1509–1515 (2005).
CAS
Google Scholar
Aguinis, H. & Harden, E. E. in Statistical and Methodological Myths and Urban Legends (ed Lance, C. E., Vandenberg, R. J.) Ch. 11 (Routledge, 2008).
Raygoza Garay, J. A. et al. Gut microbiome composition is associated with future onset of Crohn’s disease in healthy first-degree relatives. Gastroenterology 165, 670–681 (2023).
CAS
Google Scholar
Zheng, J. et al. Noninvasive, microbiome-based diagnosis of inflammatory bowel disease. Nat. Med. 30, 3555–3567 (2024).
CAS
Google Scholar
Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, eado9336 (2024).
CAS
Google Scholar
Xiong, D. et al. A structurally informed human protein-protein interactome reveals proteome-wide perturbations caused by disease mutations. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02428-4 (2024).
Google Scholar
Jiang, K. et al. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 387, eadr6006 (2024).
Google Scholar
Li, M. et al. Performance of gut microbiome as an independent diagnostic tool for 20 diseases: cross-cohort validation of machine-learning classifiers. Gut Microbes 15, 2205386 (2023).
Google Scholar
Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).
CAS
Google Scholar
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2 edn (Springer, 2009).
Quinn-Bohmann, N. et al. Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut. Nat. Microbiol. 9, 1700–1712 (2024).
CAS
Google Scholar
Moore, L. R. et al. Revisiting the y-ome of Escherichia coli. Nucleic Acids Res. 52, 12201–12207 (2024).
CAS
Google Scholar
Box, G. E. P. Science and statistics. J. Am. Stat. Assoc. 71, 791–799 (1976).
Google Scholar
Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).
CAS
Google Scholar
Fisch, D. et al. Defining host-pathogen interactions employing an artificial intelligence workflow. eLife 8, e40560 (2019).
Google Scholar
Sinha, S. et al. PERCEPTION predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors. Nat. Cancer 5, 938–952 (2024).
Google Scholar
Sahoo, D. et al. Artificial intelligence guided discovery of a barrier-protective therapy in inflammatory bowel disease. Nat. Commun. 12, 4246 (2021).
CAS
Google Scholar
Santos, A. J. M. et al. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 632, 401–410 (2024).
CAS
Google Scholar
Rahmani, S. et al. Gluten-dependent activation of CD4+ T cells by MHC class II-expressing epithelium. Gastroenterology 167, 1113–1128 (2024).
CAS
Google Scholar
Li, C. G., Kreiman, G. & Ramanathan, S. Discovering neural policies to drive behaviour by integrating deep reinforcement learning agents with biological neural networks. Nat. Mach. Intell. https://doi.org/10.1038/s42256-024-00854-2 (2024).
Google Scholar
Vidovic, T., Dakhovnik, A., Hrabovskyi, O., MacArthur, M. R. & Ewald, C. Y. AI-predicted mTOR inhibitor reduces cancer cell proliferation and extends the lifespan of C. elegans. Int. J. Mol. Sci. 24, 7850 (2023).
CAS
Google Scholar
Vandamme, T. F. Use of rodents as models of human diseases. J. Pharm. Bioallied Sci. 6, 2–9 (2014).
Google Scholar
Khatri, P. et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J. Exp. Med. 210, 2205–2221 (2013).
CAS
Google Scholar
Li, Y. et al. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat. Commun. 13, 6891 (2022).
CAS
Google Scholar
Nordmann, T. M. et al. Spatial proteomics identifies JAKi as treatment for a lethal skin disease. Nature https://doi.org/10.1038/s41586-024-08061-0 (2024).
Google Scholar
Maslova, A. et al. Deep learning of immune cell differentiation. Proc. Natl Acad. Sci. USA 117, 25655–25666 (2020).
CAS
Google Scholar
Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).
CAS
Google Scholar
Luczynski, P. et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol. 19, pyw020 (2016).
Google Scholar
Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).
Google Scholar
De Palma, G. et al. Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice. Sci. Transl. Med. 14, eabj1895 (2022).
Google Scholar
Galipeau, H. J. et al. Novel fecal biomarkers that precede clinical diagnosis of ulcerative colitis. Gastroenterology https://doi.org/10.1053/j.gastro.2020.12.004 (2020).
Google Scholar
Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).
CAS
Google Scholar
Arrieta, M. C., Walter, J. & Finlay, B. B. Human microbiota-associated mice: a model with challenges. Cell Host Microbe 19, 575–578 (2016).
CAS
Google Scholar
Joos, R. et al. Examining the healthy human microbiome concept. Nat. Rev. Microbiol. 23, 192–205 (2025).
CAS
Google Scholar
NCD Risk Factor Collaboration (NCD-RisC). Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c. Nat. Med. 29, 2885–2901 (2023).
Google Scholar
International Expert Committee. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32, 1327–1334 (2009).
Google Scholar
Lilja, H., Ulmert, D. & Vickers, A. J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat. Rev. Cancer 8, 268–278 (2008).
CAS
Google Scholar
Mei, Z. et al. Strain-specific gut microbial signatures in type 2 diabetes identified in a cross-cohort analysis of 8,117 metagenomes. Nat. Med. 30, 2265–2276 (2024).
CAS
Google Scholar
Lee, S. H. et al. Development and validation of an integrative risk score for future risk of Crohn’s disease in healthy first-degree relatives: a multicentre prospective cohort study. Gastroenterology https://doi.org/10.1053/j.gastro.2024.08.021 (2024).
Google Scholar
Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).
CAS
Google Scholar
Vatanen, T. et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562, 589–594 (2018).
CAS
Google Scholar
Savova, G. K. et al. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inf. Assoc. 17, 507–513 (2010).
Google Scholar
Porcari, S. et al. International consensus statement on microbiome testing in clinical practice. Lancet Gastroenterol. Hepatol. 10, 154–167 (2025).
CAS
Google Scholar
Mehta, R. S. et al. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease. Nat. Med. 29, 700–709 (2023).
CAS
Google Scholar
Bredon, M. et al. Faecalibacterium prausnitzii is associated with clinical response to immune checkpoint inhibitors in patients with advanced gastric adenocarcinoma: results of microbiota analysis of PRODIGE 59-FFCD 1707-DURIGAST trial. Gastroenterology https://doi.org/10.1053/j.gastro.2024.10.020 (2024).
Google Scholar
Derosa, L. et al. Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome. Cell 187, 3373–3389.e16 (2024).
CAS
Google Scholar
Torres, M. D. T. et al. Mining human microbiomes reveals an untapped source of peptide antibiotics. Cell 187, 5453–5467.e15 (2024).
CAS
Google Scholar
Merenstein, D. et al. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 15, 2185034 (2023).
Google Scholar
Yadegar, A. et al. Fecal microbiota transplantation: current challenges and future landscapes. Clin. Microbiol. Rev. 37, e0006022 (2024).
Google Scholar
Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).
CAS
Google Scholar
Ianiro, G. et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat. Med. 28, 1913–1923 (2022).
CAS
Google Scholar
Lindenbaum, J., Rund, D. G., Butler, V. P. Jr., Tse-Eng, D. & Saha, J. R. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N. Engl. J. Med. 305, 789–794 (1981).
CAS
Google Scholar
Dobkin, J. F., Saha, J. R., Butler, V. P. Jr., Neu, H. C. & Lindenbaum, J. Inactivation of digoxin by Eubacterium lentum, an anaerobe of the human gut flora. Trans. Assoc. Am. Physicians 95, 22–29 (1982).
CAS
Google Scholar
Koppel, N., Bisanz, J. E., Pandelia, M. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. eLife 7, e33953 (2018).
Google Scholar
Amir, S., Kumar, M., Kumar, V. & Mohanty, D. HgutMgene-miner: in silico genome mining tool for deciphering the drug-metabolizing potential of human gut microbiome. Comput. Biol. Med. 186, 109679 (2025).
CAS
Google Scholar
Warraich, H. J., Tazbaz, T. & Califf, R. M. FDA perspective on the regulation of artificial intelligence in health care and biomedicine. JAMA https://doi.org/10.1001/jama.2024.21451 (2024).
Google Scholar
Tikkinen-Piri, C., Rohunen, A. & Markkula, J. EU general data protection regulation: changes and implications for personal data collecting companies. Computer Law Security Rev. 34, 134–153 (2018).
Google Scholar
Knoppers, B. M., Bernier, A., Bowers, S. & Kirby, E. Open data in the era of the GDPR: lessons from the human cell atlas. Annu. Rev. Genom. Hum. Genet. 24, 369–391 (2023).
CAS
Google Scholar
Huttenhower, C., Finn, R. D. & McHardy, A. C. Challenges and opportunities in sharing microbiome data and analyses. Nat. Microbiol. 8, 1960–1970 (2023).
CAS
Google Scholar
Chen, R. J. et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 7, 719–742 (2023).
Google Scholar
Chen, Y., Clayton, E. W., Novak, L. L., Anders, S. & Malin, B. Human-centered design to address biases in artificial intelligence. J. Med. Internet Res. 25, e43251 (2023).
Google Scholar
Probul, N., Huang, Z., Saak, C. C., Baumbach, J. & List, M. AI in microbiome-related healthcare. Microb. Biotechnol. 17, e70027 (2024).
Google Scholar
Dixon, P., Horton, R. H., Newman, W. G., McDermott, J. H. & Lucassen, A. Genomics and insurance in the United Kingdom: increasing complexity and emerging challenges. Health Econ. Policy Law 19, 446–458 (2024).
Google Scholar
Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).
CAS
Google Scholar
Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).
CAS
Google Scholar
Clooney, A. G. et al. Ranking microbiome variance in inflammatory bowel disease: a large longitudinal intercontinental study. Gut 70, 499–510 (2021).
CAS
Google Scholar
Ruppe, E. et al. Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat. Microbiol. 4, 112–123 (2019).
CAS
Google Scholar
Swarte, J. C. et al. Multiple indicators of gut dysbiosis predict all-cause and cause-specific mortality in solid organ transplant recipients. Gut 73, 1650–1661 (2024).
Google Scholar
Caenepeel, C. et al. Dysbiosis and associated stool features improve prediction of response to biological therapy in inflammatory bowel disease. Gastroenterology 166, 483–495 (2024).
Google Scholar
Su, Q. et al. Faecal microbiome-based machine learning for multi-class disease diagnosis. Nat. Commun. 13, 6818 (2022).
CAS
Google Scholar
Leibovitzh, H. et al. Altered gut microbiome composition and function are associated with gut barrier dysfunction in healthy relatives of patients with Crohn’s disease. Gastroenterology 163, 1364–1376.e10 (2022).
CAS
Google Scholar
Vieira-Silva, S. et al. Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nat. Microbiol. 4, 1826–1831 (2019).
CAS
Google Scholar
Saulnier, D. M. et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141, 1782–1791 (2011).
CAS
Google Scholar
Ren, Z. et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 68, 1014–1023 (2019).
CAS
Google Scholar
Nagata, N. et al. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study. Gastroenterology 163, 222–238 (2022).
CAS
Google Scholar
Zafeiropoulou, K. et al. Alterations in intestinal microbiota of children with celiac disease at the time of diagnosis and on a gluten-free diet. Gastroenterology 159, 2039–2051.e20 (2020).
CAS
Google Scholar
Leung, H. et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci. Transl. Med. 14, eabk0855 (2022).
CAS
Google Scholar
Tap, J. et al. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 152, 111–123.e8 (2017).
Google Scholar
Armstrong, G. et al. Uniform manifold approximation and projection (UMAP) reveals composite patterns and resolves visualization artifacts in microbiome data. mSystems 6, e0069121 (2021).
Google Scholar
Xu, X., Xie, Z., Yang, Z., Li, D. & Xu, X. A t-SNE based classification approach to compositional microbiome data. Front. Genet. 11, 620143 (2020).
Google Scholar
Ferreira, R. M. et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67, 226–236 (2018).
CAS
Google Scholar
Loomba, R. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062.e5 (2017).
CAS
Google Scholar
Oh, T. G. et al. A universal gut-microbiome-derived signature predicts cirrhosis. Cell Metab. 32, 901 (2020).
CAS
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
CAS
Google Scholar
Ma, Y. et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat. Biotechnol. 40, 921–931 (2022).
CAS
Google Scholar
Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).
CAS
Google Scholar
Weis, C. et al. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nat. Med. 28, 164–174 (2022).
CAS
Google Scholar
Nishijima, S. et al. Fecal microbial load is a major determinant of gut microbiome variation and a confounder for disease associations. Cell 188, 222–236.e15 (2025).
CAS
Google Scholar
Constante, M. et al. Biogeographic variation and functional pathways of the gut microbiota in celiac disease. Gastroenterology 163, 1351–1363.e15 (2022).
CAS
Google Scholar
Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).
CAS
Google Scholar
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
CAS
Google Scholar
Wilmanski, T. et al. Heterogeneity in statin responses explained by variation in the human gut microbiome. Med 3, 388–405.e6 (2022).
CAS
Google Scholar
Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).
CAS
Google Scholar
She, J. et al. Statins aggravate insulin resistance through reduced blood glucagon-like peptide-1 levels in a microbiota-dependent manner. Cell Metab. 36, 408–421.e5 (2024).
CAS
Google Scholar
Pandi, A. et al. Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides. Nat. Commun. 14, 7197 (2023).
CAS
Google Scholar
Caschera, F. Bacterial cell-free expression technology to in vitro systems engineering and optimization. Synth. Syst. Biotechnol. 2, 97–104 (2017).
Google Scholar
Huang, Y. et al. High-throughput microbial culturomics using automation and machine learning. Nat. Biotechnol. 41, 1424–1433 (2023).
CAS
Google Scholar
Ng, K. M. et al. Single-strain behavior predicts responses to environmental pH and osmolality in the gut microbiota. mBio 14, e0075323 (2023).
Google Scholar
Leao, T. F. et al. NPOmix: a machine learning classifier to connect mass spectrometry fragmentation data to biosynthetic gene clusters. PNAS Nexus 1, pgac257 (2022).
Google Scholar
Nguyen, H. A. et al. Predicting Pseudomonas aeruginosa drug resistance using artificial intelligence and clinical MALDI-TOF mass spectra. mSystems 9, e0078924 (2024).
Google Scholar
Boeckaerts, D. et al. Prediction of Klebsiella phage-host specificity at the strain level. Nat. Commun. 15, 4355 (2024).
CAS
Google Scholar
Raajaraam, L. & Raman, K. Modeling microbial communities: perspective and challenges. ACS Synth. Biol. 13, 2260–2270 (2024).
CAS
Google Scholar
Ghannam, R. B. & Techtmann, S. M. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Comput. Struct. Biotechnol. J. 19, 1092–1107 (2021).
CAS
Google Scholar
Hashizume, T., Ozawa, Y. & Ying, B. W. Employing active learning in the optimization of culture medium for mammalian cells. NPJ Syst. Biol. Appl. 9, 20 (2023).
CAS
Google Scholar
Bai, L. et al. AI-enabled organoids: construction, analysis, and application. Bioact. Mater. 31, 525–548 (2024).
Google Scholar
Kong, J. et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat. Commun. 11, 5485 (2020).
CAS
Google Scholar
Michel-Mata, S., Wang, X. W., Liu, Y. Y. & Angulo, M. T. Predicting microbiome compositions from species assemblages through deep learning. iMeta 1, e3 (2022).
CAS
Google Scholar
Kang, D. & Douglas, A. E. Functional traits of the gut microbiome correlated with host lipid content in a natural population of Drosophila melanogaster. Biol. Lett. 16, 20190803 (2020).
CAS
Google Scholar
Maltecca, C. et al. Predicting growth and carcass traits in swine using microbiome data and machine learning algorithms. Sci. Rep. 9, 6574 (2019).
Google Scholar
Kuthyar, S., Manus, M. B. & Amato, K. R. Leveraging non-human primates for exploring the social transmission of microbes. Curr. Opin. Microbiol. 50, 8–14 (2019).
Google Scholar
Bisanz, J. E., Upadhyay, V., Turnbaugh, J. A., Ly, K. & Turnbaugh, P. J. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe 26, 265–272.e4 (2019).
CAS
Google Scholar
Caminero, A. et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151, 670–683 (2016).
CAS
Google Scholar
Dey, N. et al. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 163, 95–107 (2015).
CAS
Google Scholar
Bucci, V. et al. MDSINE: microbial dynamical systems INference engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).
Google Scholar
Schreiner M. OpenAI’s ChatGPT app for Android is now available. The Decoder https://the-decoder.com/openai-launches-chatgpt-app-for-android (updated 25 July 2023).