Connect with us

AI Research

China Powers AI Boom with Undersea Data Centers

Published

on


To grow its economy, China is betting big on artificial intelligence, cloud computing and other digital technology—and a big part of that bet involves rapidly building data centers to boost computing power. But these massive collections of servers gobble up growing amounts of energy, and each one cycles through hundreds of thousands of gallons of water a day to carry away the heat they generate.

That means these facilities—in China and beyond—will increasingly compete with water demand linked directly to human survival, from agriculture to daily drinking. Many companies have sited their data centers in some of the driest regions of the world, including Arizona, parts of Spain, and the Middle East, because dry air reduces the risks of damage to the equipment from humidity, according to an investigation by the nonprofit journalist organization SourceMaterial and the Guardian. Partly to address water concerns, China is now putting a data center in the wettest place there is: the ocean. This June construction began on a wind-powered underwater data center about six miles off the coast of Shanghai, one of China’s AI hubs. [Read more: What Do Google’s AI Answers Cost the Environment?]

“China’s ambitious approach signals a bold shift toward low-carbon digital infrastructure, and it could influence global norms in sustainable computing,” says Shabrina Nadhila, an analyst at energy-focused think tank Ember, who has researched data centers.


On supporting science journalism

If you’re enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Keeping Data Centers Cool

Data centers store information and perform complex calculations for businesses, whose increasing automation is steadily ramping up such needs. These facilities consume vast amounts of electricity and water because their servers work nonstop and in close proximity—and they generate waste heat as a by-product, which can damage equipment and destroy data. So they need to be constantly cooled.

Roughly 40 percent of the electricity consumed by an ordinary data center is for this purpose. Most of that energy is used to chill water, which is sprayed into the air that circulates around the servers or is allowed to evaporate near them, lowering their temperatures. That water can come from underground, from nearby rivers or streams, or from reclaimed wastewater.

An artist’s rendering of a wind-powered underwater data center being built off the coast of Shanghai.

Shanghai Hailanyun Technology

Instead undersea data centers use pipes to pump seawater through a radiator on the back of server racks to absorb heat and carry it away. Hailanyun—the company sometimes referred to as HiCloud that is behind the Shanghai data center—says an assessment conducted with the China Academy of Information and Communications Technology shows its project uses at least 30 percent less electricity than on-land data centers, thanks to natural cooling.

The Shanghai center will also be connected to a nearby offshore wind farm that is set to supply 97 percent of its energy, says Hailanyun spokesperson Li Langping.

The project’s first phase is designed to contain 198 server racks—enough to hold 396 to 792 AI-capable servers—and is slated to begin operation in September, Li says. It is expected to provide enough computing power to complete the equivalent of training GPT-3.5—the large language model that OpenAI released in 2022 and used to fine-tune ChatGPT—in the space of a day, he adds. Yet Hailanyun’s Shanghai center is small compared with a typical land-based one: a medium-scale data center in China normally has up to 3,000 standard racks, while a superscale version can contain more than 10,000.

Leapfrogging the U.S.

At the core of Hailanyun’s $223-million Shanghai gambit is a technology that Microsoft pioneered more than a decade ago under an effort called Project Natick, in which the company sank a shipping-container-sized capsule holding more than 800 servers 117 feet below the surface off the coast of Scotland. After hauling up the pod two years later, Microsoft found that underwater data centers “are reliable, practical and use energy sustainably.”

The experiment also resulted in fewer broken servers compared with on-land data centers because the vessel was sealed off and filled with nitrogen, which is less corrosive than oxygen, Microsoft said in a 2020 press release. The lack of people also meant that the equipment avoided physical contacts or movements that may otherwise cause them damage in an on-land center, the company said.

Aerial view of barge in ocean

Hailanyun places the first phase of its underwater data center into the ocean off the coast of Hainan in December 2022.

Shanghai Hailanyun Technology

But Microsoft has reportedly shelved Project Natick. A company spokesperson did not answer questions about whether or not the project was terminated. Instead, they provided a statement: “While we don’t currently have data centers in the water, we will continue to use Project Natick as a research platform to explore, test, and validate new concepts around data center reliability and sustainability.”

Hailanyun aims to leapfrog American companies: if the Shanghai project is successful, Li expects his company to springboard toward large-scale deployments of offshore, wind-powered undersea data centers with the support of the Chinese government.

Zhang Ning, a postdoctoral researcher at the University of California, Davis, who specializes in next-generation low-carbon infrastructure, notes that Hailanyun has moved from a pilot project conducted in Hainan in December 2022 to commercial rollouts in less than 30 months—“something Microsoft’s Project Natick never attempted.”

Environmental Concerns

In spite of the apparent benefits of underwater data centers, some concerns remain—especially over potential environmental impacts. Microsoft researchers found their pod had caused some localized warming in the sea, though the impact was limited. “The water just meters downstream of a Natick vessel would get a few thousandths of a degree warmer at most,” they wrote.

But other researchers say submerged data centers could harm aquatic biodiversity during a marine heat wave—a period of unusually high ocean temperatures. In those cases, the outlet water from the vessel would be even warmer and hold less of the oxygen that aquatic creatures need to survive, a 2022 paper said.

Two white containers suspened by cables above the ocean

Two water-tight containers carrying servers and other equipment are lowered into the ocean off the coast of Hainan as part of China’s first commercial underwater data center in November 2023.

Shanghai Hailanyun Technology

Another concern is security. A 2024 study found that undersea data centers can be destroyed by certain noises carried out by underwater speaker systems, which raises concerns about malicious attacks using sound.

In response to such concerns, Hailanyun says its undersea data centers are “environmentally friendly,” citing an assessment conducted on one of its test pods in southern China’s Pearl River in 2020. “The heat dissipated by the undersea data center caused less than one degree of temperature rise in the surrounding water,” Li says. “It virtually did not cause any substantial impact.”

The undersea data center concept seems to have growing appeal beyond China. Countries including South Korea have also announced plans to pursue them, while Japan and Singapore are mulling data centers that float on the ocean’s surface instead.

Zhang says that whether other coastal areas will dive into the trend hinges less on technical feasibility and more on how quickly would-be operators can resolve the regulatory, ecological and supply-chain questions that “China is now tackling at scale.”



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

AI Research

Alberta Follows Up Its Artificial Intelligence Data Centre Strategy with a Levy Framework

Published

on


Alberta is introducing a levy framework for data centres powering artificial intelligence technologies, the Province recently announced.

Effective by the end of 2026, a 2% levy on computer hardware will apply to grid-connected data centres of 75 megawatts or greater, according to a statement from Alberta.

The levy will be fully offset against provincial corporate income taxes, the government says. Once a data centre becomes profitable and pays corporate income tax in Alberta, the levy will not result in any additional tax burden.

Data centres of 75MW or greater will be recognized as designated industrial properties, with property values assessed by the province. Land and buildings associated with data centres will be subject to municipal taxation.

The framework was forged through a six-week consultation with industry stakeholders, according to Nate Glubish, Minister of Technology and Innovation.

“Alberta’s government has a duty to ensure Albertans receive a fair deal from data centre investments,” the provincial minister remarked. “This approach strikes a balance that we believe is fair to industry and Albertans, while protecting Alberta’s competitive advantage.”

Glubish added that the Alberta government is also exploring other options. This includes a payment in lieu of taxes program that would allow companies to make predictable annual payments instead of fluctuating levy amounts, as well as a deferral program to ease cash-flow pressures during construction and early years of operation.

“After working closely with industry, we’re introducing a fair, predictable levy that ensures data centres pay their share for the infrastructure and services that support them,” commented Nate Horner, Minister of Finance.

“This approach provides stability for businesses while generating new revenue to support Alberta’s future,” he posits.

The decision builds on the Alberta Artificial Intelligence Data Centre Strategy, introduced in 2024.

The strategy aims to capture a larger share of the global AI data centre market, which is expected to exceed $820 billion by 2030 as Alberta becomes a data centre powerhouse within Canada.

However, the Province’s tactics have not gone uncriticized.



Source link

Continue Reading

AI Research

Reimagining clinical AI: from clickstreams to clinical insights with EHR use metadata

Published

on


  • Harnessing EHR data for health research | Nature Medicine. https://www.nature.com/articles/s41591-024-03074-8.

  • Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Adler-Milstein, J. et al. Meeting the Moment: Addressing Barriers and Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis. NAM Perspect. https://doi.org/10.31478/202209c. (2022)

  • Aquino, Y. S. J. et al. Utopia versus dystopia: Professional perspectives on the impact of healthcare artificial intelligence on clinical roles and skills. Int. J. Med. Inf. 169, 104903 (2023).


    Google Scholar
     

  • Pavuluri, S., Sangal, R., Sather, J. & Taylor, R. A. Balancing act: the complex role of artificial intelligence in addressing burnout and healthcare workforce dynamics. BMJ Health Care Inf. 31, e101120 (2024).


    Google Scholar
     

  • Rule, A. et al. Guidance for reporting analyses of metadata on electronic health record use. J. Am. Med. Inform. Assoc.31, 784–789 (2023).

    PubMed Central 

    Google Scholar
     

  • Adler-Milstein, J., Adelman, J. S., Tai-Seale, M., Patel, V. L. & Dymek, C. EHR audit logs: A new goldmine for health services research?. J. Biomed. Inform. 101, 103343 (2020).

    PubMed 

    Google Scholar
     

  • Kannampallil, T. & Adler-Milstein, J. Using electronic health record audit log data for research: insights from early efforts. J. Am. Med. Inform. Assoc. 30, 167–171 (2023).


    Google Scholar
     

  • Rule, A., Melnick, E. R. & Apathy, N. C. Using event logs to observe interactions with electronic health records: an updated scoping review shows increasing use of vendor-derived measures. J. Am. Med. Inform. Assoc. 30, 144–154 (2023).


    Google Scholar
     

  • Rule, A., Chiang, M. F. & Hribar, M. R. Using electronic health record audit logs to study clinical activity: a systematic review of aims, measures, and methods. J. Am. Med. Inform. Assoc.27, 480–490 (2020).

    PubMed 

    Google Scholar
     

  • Physician time spent using the electronic health record during outpatient encounters: a descriptive study. Ann Intern. Med 172, No 3. https://www.acpjournals.org/doi/10.7326/M18-3684.

  • Rotenstein, L. S., Holmgren, A. J., Downing, N. L. & Bates, D. W. Differences in total and after-hours electronic health record time across ambulatory specialties. JAMA Intern. Med. 181, 863–865 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tai-Seale, M. et al. Association of physician burnout with perceived EHR work stress and potentially actionable factors. J. Am. Med. Inform. Assoc. 30, 1665–1672 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Modeling care team structures in the neonatal intensive care unit through network analysis of EHR Audit Logs. Methods Inf. Med. 58, 109–123 (2019).

    PubMed 

    Google Scholar
     

  • Yakusheva, O. et al. An electronic health record metadata-mining approach to identifying patient-level interprofessional clinician teams in the intensive care unit. J. Am. Med. Inform. Assoc. 32, 426–434 (2025).

    PubMed 

    Google Scholar
     

  • Chen, Y., Patel, M. B., McNaughton, C. D. & Malin, B. A. Interaction patterns of trauma providers are associated with length of stay. J. Am. Med. Inform. Assoc.25, 790–799 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou, S. S. et al. Effect of clinician attention switching on workload and wrong-patient errors. Br. J. Anaesth. 129, e22–e24 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose, C. et al. Team is brain: leveraging EHR audit log data for new insights into acute care processes. J. Am. Med. Inform. Assoc. 30, 8–15 (2023).


    Google Scholar
     

  • Melnick, E. R. et al. Analysis of electronic health record use and clinical productivity and their association with physician turnover. JAMA Netw. Open 4, e2128790 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, B., Lenhart, A., Ross, R. & Dorr, D. A. Burnout and EHR use among academic primary care physicians with varied clinical workloads. AMIA Summits Transl. Sci. Proc. 2019, 136–144 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossetti, S. C. et al. Real-time surveillance system for patient deterioration: a pragmatic cluster-randomized controlled trial. Nat. Med. 1–8. https://doi.org/10.1038/s41591-025-03609-7. (2025)

  • Rossetti, S. C. et al. Healthcare process modeling to phenotype clinician behaviors for exploiting the signal gain of clinical expertise (HPM-ExpertSignals): Development and evaluation of a conceptual framework. J. Am. Med. Inform. Assoc.28, 1242–1251 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X., Yan, C., Malin, B. A., Patel, M. B. & Chen, Y. Predicting next-day discharge via electronic health record access logs. J. Am. Med. Inform. Assoc.28, 2670–2680 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhaskhar, N., Ip, W., Chen, J. H. & Rubin, D. L. Clinical outcome prediction using observational supervision with electronic health records and audit logs. J. Biomed. Inform. 147, 104522 (2023).

    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Optimizing large language models for discharge prediction: best practices in leveraging electronic health record audit logs. AMIA Annu. Symp. Proc. 2024, 1323–1331 (2025).

  • Kim, S., Warner, B. C., Lew, D., Lou, S. S. & Kannampallil, T. Measuring cognitive effort using tabular transformer-based language models of electronic health record-based audit log action sequences. J. Am. Med. Inform. Assoc.31, 2228–2235 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossetti, S. C. et al. Leveraging clinical expertise as a feature – not an outcome – of predictive models: evaluation of an early warning system use case. Amia. Annu. Symp. Proc. 2019, 323–332 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duggan, M. J. et al. Clinician experiences with ambient scribe technology to assist with documentation burden and efficiency. JAMA Netw. Open 8, e2460637 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia, P. et al. Artificial intelligence–generated draft replies to patient inbox messages. JAMA Netw. Open 7, e243201 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinsky, C. A., Rotenstein, L., Holmgren, A. J. & Apathy, N. C. The number of patient scheduled hours resulting in a 40-hour work week by physician specialty and setting: a cross-sectional study using electronic health record event log data. J. Am. Med. Inform. Assoc. 32, 235–240 (2025).

    PubMed 

    Google Scholar
     

  • Holmgren, A. J., Sinsky, C. A., Rotenstein, L. & Apathy, N. C. National comparison of ambulatory physician electronic health record use across specialties. J. Gen. Intern. Med. 39, 2868–2870 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rotenstein, L. et al. Virtual scribes and physician time spent on electronic health records. JAMA Netw. Open 7, e2413140 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rotenstein, L. S. et al. Association of primary care physicians’ Electronic Inbox activity patterns with patients’ likelihood to recommend the physician. J. Gen. Intern. Med. 39, 150–152 (2024).

    PubMed 

    Google Scholar
     

  • Li, H. et al. Quantifying EHR and policy factors associated with the gender productivity gap in ambulatory, general internal medicine. J. Gen. Intern. Med. 39, 557–565 (2024).

    PubMed 

    Google Scholar
     

  • Jay Holmgren, A., Steitz, B., Lou, S. & Apathy, N. Using Electronic Health Record Metadata to Understand Clinician Work and Behavior. In Reengineering Clinical Workflow in the Digital and AI Era: Toward Safer and More Efficient Care (eds. Zheng, K., Westbrook, J. & Patel, V. L.) 299–317 (Springer Nature Switzerland, Cham, https://doi.org/10.1007/978-3-031-82971-0_15. 2025).

  • Rotenstein, L. & Jay Holmgren, A. COVID exacerbated the gender disparity in physician electronic health record inbox burden. J. Am. Med. Inform. Assoc. 30, 1720–1724 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, K. et al. Differences in ambulatory EHR use patterns for male vs. female physicians. Catal. Carryover 5, (2019).

  • Rotenstein, L. S. et al. System-level factors and time spent on electronic health records by primary care physicians. JAMA Netw. Open 6, e2344713 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmgren, A. J., Thombley, R., Sinsky, C. A. & Adler-Milstein, J. Changes in physician electronic health record use with the expansion of telemedicine. JAMA Intern. Med. 183, 1357–1365 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tawfik, D. et al. Emerging domains for measuring health care delivery with electronic health record metadata. J. Med. Internet Res. 27, e64721 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, C. et al. Differences in health professionals’ engagement with electronic health records based on inpatient race and ethnicity. JAMA Netw. Open 6, e2336383 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, M. L. et al. Documenting or operating: where is time spent in general surgery residency?. J. Surg. Educ. 75, e97–e106 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read-Brown, S. et al. Time requirements for electronic health record use in an Academic Ophthalmology Center. JAMA Ophthalmol. 135, 1250–1257 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dziorny, A. C. et al. Automatic detection of front-line clinician hospital shifts: a novel use of electronic health record timestamp data. Appl. Clin. Inform. 10, 28–37 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hribar, M. R. et al. Secondary use of EHR timestamp data: validation and application for workflow optimization. Amia. Annu. Symp. Proc. 2015, 1909–1917 (2015).

    PubMed Central 

    Google Scholar
     

  • Hribar, M. R. et al. Secondary use of electronic health record data for clinical workflow analysis. J. Am. Med. Inform. Assoc. JAMIA 25, 40–46 (2018).

    PubMed 

    Google Scholar
     

  • Sinsky, C. A. et al. Metrics for assessing physician activity using electronic health record log data. J. Am. Med. Inform. Assoc. 27, 639–643 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avdagovska, M. et al. Exploring the impact of in basket metrics on the adoption of a new electronic health record system among specialists in a tertiary hospital in alberta: descriptive study. J. Med. Internet Res. 26, e53122 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akbar, F. et al. Physicians’ electronic inbox work patterns and factors associated with high inbox work duration. J. Am. Med. Inform. Assoc. 28, 923–930 (2021).

    PubMed 

    Google Scholar
     

  • Arndt, B. G. et al. Tethered to the EHR: Primary care physician workload assessment using EHR event log data and time-motion observations. Ann. Fam. Med. 15, 419–426 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amroze, A. et al. Use of electronic health record access and audit logs to identify physician actions following noninterruptive alert opening: descriptive study. JMIR Med. Inform. 7, e12650 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cutrona, S. L. et al. Primary care providers’ opening of time-sensitive alerts sent to commercial electronic health record inBaskets. J. Gen. Intern. Med. 32, 1210–1219 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rumlow, Z. et al. The impact of diagnosis-specific plan templates on admission note writing time: a quality improvement initiative. J. Grad. Med. Educ. 16, 581–587 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, O. T. et al. Primary care physicians’ electronic health record proficiency and efficiency behaviors and time interacting with electronic health records: a quantile regression analysis. J. Am. Med. Inform. Assoc. JAMIA 29, 461–471 (2021).


    Google Scholar
     

  • Chen, B. et al. Mining tasks and task characteristics from electronic health record audit logs with unsupervised machine learning. J. Am. Med. Inform. Assoc. 28, 1168–1177 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou, S. S., Liu, H., Harford, D., Lu, C. & Kannampallil, T. Characterizing the macrostructure of electronic health record work using raw audit logs: an unsupervised action embeddings approach. J. Am. Med. Inform. Assoc. 30, 539–544 (2023).

    PubMed 

    Google Scholar
     

  • Tiase, V. L., Sward, K. A. & Facelli, J. C. A scalable and extensible logical data model of electronic health Record Audit Logs for Temporal Data Mining (RNteract): model conceptualization and formulation. JMIR Nurs. 7, e55793 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X., Zhao, Y., Yan, C., Derr, T. & Chen, Y. Inferring EHR utilization workflows through audit logs. Amia. Annu. Symp. Proc. 2022, 1247–1256 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Adler-Milstein, J. & Sinsky, C. Measuring and maximizing undivided attention in the context of electronic health records. Appl. Clin. Inform. https://doi.org/10.1055/a-1892-1437. (2022)

  • Moy, A. J. et al. Characterizing multitasking and workflow fragmentation in electronic health records among emergency department clinicians: using time-motion data to understand documentation burden. Appl. Clin. Inform. 12, 1002–1013 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, B., Zhang, X., Malin, B. A. & Chen, Y. Learning tasks of pediatric providers from electronic health record audit logs. Amia. Annu. Symp. Proc. 2020, 612–618 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, P. et al. Measuring collaboration through concurrent electronic health record usage: network analysis study. JMIR Med. Inform. 9, e28998 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mannering, H. et al. Assessing neonatal intensive care unit structures and outcomes before and during the COVID-19 pandemic: network analysis study. J. Med. Internet Res. 23, e27261 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Yan, C. & Patel, M. B. Network analysis subtleties in ICU structures and outcomes. Am. J. Respir. Crit. Care Med. 202, 1606–1607 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Lorenzi, N. M., Sandberg, W. S., Wolgast, K. & Malin, B. A. Identifying collaborative care teams through electronic medical record utilization patterns. J. Am. Med. Inform. Assoc. JAMIA 24, e111–e120 (2017).

    PubMed 

    Google Scholar
     

  • Yan, C. et al. Collaboration structures in COVID-19 critical care: retrospective network analysis study. JMIR Hum. Factors 8, e25724 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly Costa, D., Liu, H., Boltey, E. M. & Yakusheva, O. The structure of critical care nursing teams and patient outcomes: a network analysis. Am. J. Respir. Crit. Care Med. 201, 483–485 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, C. et al. Provider Networks in the Neonatal Intensive Care Unit Associate with Length of Stay. In 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC) 127–134. https://doi.org/10.1109/CIC48465.2019.00024. (2019)

  • Apathy, N. C., Holmgren, A. J. & Cross, D. A. Physician EHR time and visit volume following adoption of team-based documentation support. JAMA Intern. Med. 184, 1212–1221 (2024).

    PubMed 

    Google Scholar
     

  • Tang, M., Holmgren, A. J., Huckman, R. S., Pany, M. J. & McWilliams, J. M. Modalities, Mo Problems: impacts of provider modality switching in hybrid outpatient clinics. Acad. Manag. Proc. 2024, 13107 (2024).


    Google Scholar
     

  • Jiang, S. Y., Hum, R. S., Vawdrey, D. & Mamykina, L. In search of social translucence: an audit log analysis of handoff documentation views and updates. Amia. Annu. Symp. Proc. 2015, 669–676 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyles, C. R. et al. Using electronic health record portals to improve patient engagement: research priorities and best practices. Ann. Intern. Med. 172, S123–S129 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Association between patient portal engagement and weight loss outcomes in patients after bariatric surgery: longitudinal observational study using electronic health records. J. Med. Internet Res. 26, e56573 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, S. E., Embí, P. J. & Matheny, M. E. Sustainable deployment of clinical prediction tools—a 360° approach to model maintenance. J. Am. Med. Inform. Assoc. 31, 1195–1198 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, L. L. et al. EHR foundation models improve robustness in the presence of temporal distribution shift. Sci. Rep. 13, 3767 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, K. E. et al. Large language models are less effective at clinical prediction tasks than locally trained machine learning models. J. Am. Med. Inform. Assoc. ocaf038. https://doi.org/10.1093/jamia/ocaf038. (2025)

  • Wornow, M. et al. The shaky foundations of large language models and foundation models for electronic health records. Npj Digit. Med. 6, 1–10 (2023).


    Google Scholar
     

  • Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. A foundation model for generalizable disease detection from retinal images. Nature 622, 156–163 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, L. L. et al. A multi-center study on the adaptability of a shared foundation model for electronic health records. Npj Digit. Med. 7, 1–9 (2024).


    Google Scholar
     

  • Peng, C. et al. A study of generative large language model for medical research and healthcare. NPJ Digit. Med. 6, 210 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan, R., Rajpurkar, P. & Topol, E. J. Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 6, 1346–1352 (2022).


    Google Scholar
     

  • Katsoulakis, E. et al. Digital twins for health: a scoping review. NPJ Digit. Med. 7, 77 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Embí, P. J., Rhew, D. C., Peterson, E. D. & Pencina, M. J. Launching the Trustworthy and Responsible AI Network (TRAIN): A Consortium to Facilitate Safe and Effective AI Adoption. JAMA https://doi.org/10.1001/jama.2025.1331. (2025)

  • Maddox, T. M. et al. Generative AI in Medicine — Evaluating Progress and Challenges. N. Engl. J. Med. 0

  • You, J. G., Hernandez-Boussard, T., Pfeffer, M. A., Landman, A. & Mishuris, R. G. Clinical trials informed framework for real world clinical implementation and deployment of artificial intelligence applications. Npj Digit. Med. 8, 1–5 (2025).


    Google Scholar
     

  • McCoy, A. B. et al. Clinician collaboration to improve clinical decision support: the Clickbusters initiative. J. Am. Med. Inform. Assoc. 29, 1050–1059 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baxter, S. L., Apathy, N. C., Cross, D. A., Sinsky, C. & Hribar, M. R. Measures of electronic health record use in outpatient settings across vendors. J. Am. Med. Inform. Assoc. JAMIA 28, 955–959 (2021).

    PubMed 

    Google Scholar
     

  • Cohen, G. R., Boi, J., Johnson, C., Brown, L. & Patel, V. Measuring time clinicians spend using EHRs in the inpatient setting: a national, mixed-methods study. J. Am. Med. Inform. Assoc. JAMIA 28, 1676–1682 (2021).

    PubMed 

    Google Scholar
     

  • Wu, D. T. Y. et al. Using EHR audit trail logs to analyze clinical workflow: A case study from community-based ambulatory clinics. Amia. Annu. Symp. Proc. 2017, 1820–1827 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinsky, C. et al. Allocation of physician time in ambulatory practice: a time and motion study in 4 specialties. Ann. Intern. Med. 165, 753–760 (2016).

    PubMed 

    Google Scholar
     

  • Were, M. C. et al. Role and use of race in artificial intelligence and machine learning models related to health. J. Med. Internet Res. 27, e73996 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. Npj Digit. Med. 1, 1–10 (2018).


    Google Scholar
     

  • Grabowska, M. E. et al. Developing and evaluating pediatric phecodes (Peds-Phecodes) for high-throughput phenotyping using electronic health records. J. Am. Med. Inform. Assoc. 31, 386–395 (2024).

    PubMed 

    Google Scholar
     

  • Hripcsak, G. & Albers, D. J. Next-generation phenotyping of electronic health records. J. Am. Med. Inform. Assoc. 20, 117–121 (2013).

    PubMed 

    Google Scholar
     

  • Yasrebi-de Kom, I. A. R. et al. Electronic health record-based prediction models for in-hospital adverse drug event diagnosis or prognosis: a systematic review. J. Am. Med. Inform. Assoc. 30, 978–988 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dos Santos, F. C. et al. The effect of a combined mHealth and community health worker intervention on HIV self-management. J. Am. Med. Inform. Assoc. 32, 510–517 (2025).

    PubMed 

    Google Scholar
     

  • Liu, S. et al. Leveraging explainable artificial intelligence to optimize clinical decision support. J. Am. Med. Inform. Assoc. 31, 968–974 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozkaynak, M., Ponnala, S. & Werner, N. E. Patient-Oriented Workflow Approach. In Reengineering Clinical Workflow in the Digital and AI Era: Toward Safer and More Efficient Care (eds. Zheng, K., Westbrook, J. & Patel, V. L.) 213–229 (Springer Nature Switzerland, Cham, https://doi.org/10.1007/978-3-031-82971-0_11. 2025).

  • Sánchez-Salmerón, R. et al. Machine learning methods applied to triage in emergency services: A systematic review. Int. Emerg. Nurs. 60, 101109 (2022).

    PubMed 

    Google Scholar
     



  • Source link

    Continue Reading

    AI Research

    Minister Bae Kyung-hun opens GPU resources for AI research to foster Nobel laureates – CHOSUNBIZ – Chosun Biz

    Published

    on



    Minister Bae Kyung-hun opens GPU resources for AI research to foster Nobel laureates – CHOSUNBIZ  Chosun Biz



    Source link

    Continue Reading

    Trending