Connect with us

Events & Conferences

Alexa unveils new speech recognition, text-to-speech technologies

Published

on


Today in Arlington, Virginia, at Amazon’s new HQ2, Amazon senior vice president Dave Limp hosted an event at which the Devices and Services organization rolled out its new lineup of products and services. For part of the presentation, Limp was joined by Rohit Prasad, an Amazon senior vice president and head scientist for artificial general intelligence, who previewed a host of innovations from the Alexa team.

Prasad’s main announcement was the release of the new Alexa large language model (LLM), a larger and more generalized model that has been optimized for voice applications. This model can converse with customers on any topic; it’s been fine-tuned to reliably make the right API calls, so it will turn on the right lights and adjust the temperature in the right rooms; it’s capable of proactive, inference-based personalization, so it can highlight calendar events, recently played music, or even recipe recommendations based on a customer’s grocery purchases; it has several knowledge-grounding mechanisms, to make its factual assertions more reliable; and it has guardrails in place to protect customer privacy.

New Amazon speech technologies leverage large language models to make interactions with Alexa more natural and engaging.

During the presentation, Prasad discussed several other upgrades to Alexa’s conversational-AI models, designed to make interactions with Alexa more natural. One is a new way of invoking Alexa by simply looking at the screen of a camera-enabled Alexa device, eliminating the need to say the wake word on every turn: on-device visual processing is combined with acoustic models to determine whether a customer is speaking to Alexa or someone else.

Related content

Alexa’s chief scientist on how customer-obsessed science is accelerating general intelligence.

Alexa has also had its automatic-speech-recognition (ASR) system overhauled — including machine learning models, algorithms, and hardware — and it’s moving to a new large text-to-speech (LTTS) model that’s based on the LLM architecture and is trained on thousands of hours of multispeaker, multilingual, multiaccent, and multi-speaking-style audio data.

Finally, Prasad unveiled Alexa’s new speech-to-speech model, an LLM-based model that produces output speech directly from input speech. With the speech-to-speech model, Alexa will exhibit humanlike conversational attributes, such as laughter, and it will be able to adapt its prosody not only to the content of its own utterances but to the speaker’s prosody as well — for instance, responding with excitement to the speaker’s excitement.

The ASR update will go live later this year; both LTTS and the speech-to-speech model will be deployed next year.

Speech recognition

The new Alexa ASR model is a multibillion-parameter model trained on a mix of short, goal-oriented utterances and longer-form conversations. Training required a careful alternation of data types and training targets to ensure best-in-class performance on both types of interactions.

To accommodate the larger ASR model, Alexa is moving from CPU-based speech processing to hardware-accelerated processing. The inputs to an ASR model are frames of data, or 30-millisecond snapshots of the speech signal’s frequency spectrum. On CPUs, frames are typically processed one at a time. But that’s inefficient on GPUs, which have many processing cores that run in parallel and need enough data to keep them all busy.

Related content

Determining on the fly how much additional audio to process to resolve ambiguities increases accuracy while reducing latency relative to fixed-lookahead approaches.

Alexa’s new ASR engine accumulates frames of input speech until it has enough data to ensure adequate work for all the cores in the GPUs. To minimize latency, it also tracks the pauses in the speech signal, and if the pause duration is long enough to indicate the possible end of speech, it immediately sends all accumulated frames.

The batching of speech data required for GPU processing also enables a new speech recognition algorithm that uses dynamic lookahead to improve ASR accuracy. Typically, when a streaming ASR application is interpreting an input frame, it uses the preceding frames as context: information about past frames can constrain its hypotheses about the current frame in a useful way. With batched data, however, the ASR model can use not only the preceding frames but also the following frames as context, yielding more accurate hypotheses.

The final determination of end-of-speech is made by an ASR engine’s end-pointer. The earliest end-pointers all relied on pause length. Since the advent of end-to-end speech recognition, ASR models have been trained on audio-text pairs whose texts include a special end-of-speech token at the end of each utterance. The model then learns to output the token as part of its ASR hypotheses, indicating end of speech.

Related content

Knowledge distillation and discriminative training enable efficient use of a BERT-based model to rescore automatic-speech-recognition hypotheses.

Alexa’s ASR engine has been updated with a new two-pass end-pointer that can better handle the type of mid-sentence pauses common in more extended conversational exchanges The second pass is performed by an end-pointing arbitrator, which takes as input the ASR model’s transcription of the current speech signal and its encoding of the signal. While the encoding captures features necessary for speech recognition, it also contains information useful for identifying acoustic and prosodic cues that indicate whether a user has finished speaking.

The end-pointing arbitrator is a separately trained deep-learning model that outputs a decision about whether the last frame of its input truly represents end of speech. Because it factors in both semantic and acoustic data, its judgments are more accurate than those of a model that prioritizes one or the other. And because it takes ASR encodings as input, it can leverage the ever-increasing scale of ASR models to continue to improve accuracy.

Once the new ASR model has generated a set of hypotheses about the text corresponding to the input speech, the hypotheses pass to an LLM that has been fine-tuned to rerank them, to yield more accurate results.

The architecture of the new two-stage end-pointer.

In the event that the new, improved end-pointer cuts off speech too soon, Alexa can still recover, thanks to a model that helps repair truncated speech. Applied scientist Marco Damonte and Angus Addlesee, a former intern studying artificial intelligence at Heriot-Watt University, described this model on the Amazon Science blog after presenting a paper about it at Interspeech.

The model produces a graph representation of the semantic relationships between words in an input text. From the map, downstream models can often infer the missing information; when they can’t, they can still often infer the semantic role of the missing words, which can help Alexa ask clarifying questions. This, too, makes conversation with Alexa more natural.

Large text-to-speech

Unlike earlier TTS models, LTTS is an end-to-end model. It consists of a traditional text-to-text LLM and a speech synthesis model that are fine-tuned in tandem, so the output of the LLM is tailored to the needs of the speech synthesizer. The fine-tuning dataset consists of thousands of hours of speech, versus the 100 or so hours used to train earlier models.

Related content

Senior principal scientist Jasha Droppo on the shared architectures of large language models and spectrum quantization text-to-speech models — and other convergences between the two fields.

The fine-tuned LTTS model learns to implicitly model the prosody, tonality, intonation, paralinguistics, and other aspects of speech, and its output is used to generate speech.

The result is speech that combines the complete range of emotional elements present in human communication — such as curiosity when asking questions and comic joke deliveries — with natural disfluencies and paralinguistic sounds (such as ums, ahs, or muttering) to create natural, expressive, and human-like speech output.

To further enhance the model’s expressivity, the LTTS model can be used in conjunction with another LLM fine-tuned to tag input text with “stage directions” indicating how the text should be delivered. The tagged text then passes to the TTS model for conversion to speech.

The speech-to-speech model

The Alexa speech-to-speech model will leverage a proprietary pretrained LLM to enable end-to-end speech processing: the input is an encoding of the customer’s speech signal, and the output is an encoding of Alexa’s speech signal in response.

That encoding is one of the keys to the approach. It’s a learned encoding, and it represents both semantic and acoustic features. The speech-to-speech model uses the same encoding for both input and output; the output is then decoded to produce an acoustic signal in one of Alexa’s voices. The shared “vocabulary” of input and output is what makes it possible to build the model atop a pretrained LLM.

A sample speech-to-speech interaction

The LLM is fine-tuned on an array of different tasks, such as speech recognition and speech-to-speech translation, to ensure its generality.

The speech-to-speech model has a multistep training procedure: (1) pretraining of modality-specific text and audio models; (2) multimodal training and intermodal alignment; (3) initialization of the speech-to-speech LLM; (4) fine-tuning of the LLM on a mix of self-supervised losses and supervised speech tasks; (5) alignment to desired customer experience.

Alexa’s new capabilities will begin rolling out over the next few months.





Source link

Events & Conferences

An inside look at Meta’s transition from C to Rust on mobile

Published

on


Have you ever worked is legacy code? Are you curious what it takes to modernize systems at a massive scale?

Pascal Hartig is joined on the latest Meta Tech Podcast by Elaine and Buping, two software engineers working on a bold project to rewrite the decades-old C code in one of Meta’s core messaging libraries in Rust. It’s an ambitious effort that will transform a central messaging library that is shared across Messenger, Facebook, Instagram, and Meta’s AR/VR platforms.

They discuss taking on a project of this scope – even without a background in Rust, how they’re approaching it, and what it means to optimize for ‘developer happiness.’

Download or listen to the episode below:

You can also find the episode wherever you get your podcasts, including:

The Meta Tech Podcast is a podcast, brought to you by Meta, where we highlight the work Meta’s engineers are doing at every level – from low-level frameworks to end-user features.

Send us feedback on InstagramThreads, or X.

And if you’re interested in learning more about career opportunities at Meta visit the Meta Careers page.





Source link

Continue Reading

Events & Conferences

Amazon Research Awards recipients announced

Published

on


Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 73 award recipients who represent 46 universities in 10 countries.

This announcement includes awards funded under five call for proposals during the fall 2024 cycle: AI for Information Security, Automated Reasoning, AWS AI, AWS Cryptography, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society. Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.

Recipients have access to more than 700 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.

Recommended reads

In both black-box stress testing and red-team exercises, Nova Premier comes out on top.

“Automated Reasoning is an important area of research for Amazon, with potential applications across various features and applications to help improve security, reliability, and performance for our customers. Through the ARA program, we collaborate with leading academic researchers to explore challenges in this field,” said Robert Jones, senior principal scientist with the Cloud Automated Reasoning Group. “We were again impressed by the exceptional response to our Automated Reasoning call for proposals this year, receiving numerous high-quality submissions. Congratulations to the recipients! We’re excited to support their work and partner with them as they develop new science and technology in this important area.”

Recommended reads

IAM Access Analyzer feature uses automated reasoning to recommend policies that remove unused accesses, helping customers achieve “least privilege”.

“At Amazon, we believe that solving the world’s toughest sustainability challenges benefits from both breakthrough scientific research and open and bold collaboration. Through programs like the Amazon Research Awards program, we aim to support academic research that could contribute to our understanding of these complex issues,” said Kommy Weldemariam, Director of Science and Innovation Sustainability. “The selected proposals represent innovative projects that we hope will help advance knowledge in this field, potentially benefiting customers, communities, and the environment.”

ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.

The tables below list, in alphabetical order by last name, fall 2024 cycle call-for-proposal recipients, sorted by research area.

AI for Information Security

Recipient University Research title
Christopher Amato Northeastern University Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms
Bernd Bischl Ludwig Maximilian University of Munich Improving Generative and Foundation Models Reliability via Uncertainty-awareness
Shiqing Ma University Of Massachusetts Amherst LLM and Domain Adaptation for Attack Detection
Alina Oprea Northeastern University Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms
Roberto Perdisci University of Georgia ContextADBench: A Comprehensive Benchmark Suite for Contextual Anomaly Detection

Automated Reasoning

Recipient University Research title
Nada Amin Harvard University LLM-Augmented Semi-Automated Proofs for Interactive Verification
Suguman Bansal Georgia Institute of Technology Certified Inductive Generalization in Reinforcement Learning
Ioana Boureanu University of Surrey Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems
Omar Haider Chowdhury Stony Brook University Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege
Stefan Ciobaca Alexandru Ioan Cuza University An Interactive Proof Mode for Dafny
João Ferreira INESC-ID Polyglot Automated Program Repair for Infrastructure as Code
Sicun Gao University Of California, San Diego Monte Carlo Trees with Conflict Models for Proof Search
Mirco Giacobbe University of Birmingham Neural Software Verification
Tobias Grosser University of Cambridge Synthesis-based Symbolic BitVector Simplification for Lean
Ronghui Gu Columbia University Scaling Formal Verification of Security Properties for Unmodified System Software
Alexey Ignatiev Monash University Huub: Next-Gen Lazy Clause Generation
Kenneth McMillan University of Texas At Austin Synthesis of Auxiliary Variables and Invariants for Distributed Protocol Verification
Alexandra Mendes University of Porto Overcoming Barriers to the Adoption of Verification-Aware Languages
Jason Nieh Columbia University Scaling Formal Verification of Security Properties for Unmodified System Software
Rohan Padhye Carnegie Mellon University Automated Synthesis and Evaluation of Property-Based Tests
Nadia Polikarpova University Of California, San Diego Discovering and Proving Critical System Properties with LLMs
Fortunat Rajaona University of Surrey Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems
Subhajit Roy Indian Institute of Technology Kanpur Theorem Proving Modulo LLM
Gagandeep Singh University of Illinois At Urbana–Champaign Trustworthy LLM Systems using Formal Contracts
Scott Stoller Stony Brook University Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege
Peter Stuckey Monash University Huub: Next-Gen Lazy Clause Generation
Yulei Sui University of New South Wales Path-Sensitive Typestate Analysis through Sparse Abstract Execution
Nikos Vasilakis Brown University Semantics-Driven Static Analysis for the Unix/Linux Shell
Ping Wang Stevens Institute of Technology Leveraging Large Language Models for Reasoning Augmented Searching on Domain-specific NoSQL Database
John Wawrzynek University of California, Berkeley GPU-Accelerated High-Throughput SAT Sampling

AWS AI

Recipient University Research title
Panagiotis Adamopoulos Emory University Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations
Vikram Adve University of Illinois at Urbana–Champaign Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models
Frances Arnold California Institute of Technology Closed-loop Generative Machine Learning for De Novo Enzyme Discovery and Optimization
Yonatan Bisk Carnegie Mellon University Useful, Safe, and Robust Multiturn Interactions with LLMs
Shiyu Chang University of California, Santa Barbara Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing
Yuxin Chen University of Pennsylvania Provable Acceleration of Diffusion Models for Modern Generative AI
Tianlong Chen University of North Carolina at Chapel Hill Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing
Mingyu Ding University of North Carolina at Chapel Hill Aligning Long Videos and Language as Long-Horizon World Models
Nikhil Garg Cornell University Market Design for Responsible Multi-agent LLMs
Jessica Hullman Northwestern University Human-Aligned Uncertainty Quantification in High Dimensions
Christopher Jermaine Rice University Fast, Trusted AI Using the EINSUMMABLE Compiler
Yunzhu Li Columbia University Physics-Informed Foundation Models Through Embodied Interactions
Pattie Maes Massachusetts Institute of Technology Understanding How LLM Agents Deviate from Human Choices
Sasa Misailovic University of Illinois at Urbana–Champaign Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models
Kristina Monakhova Cornell University Trustworthy extreme imaging for science using interpretable uncertainty quantification
Todd Mowry Carnegie Mellon University Efficient LLM Serving on Trainium via Kernel Generation
Min-hwan Oh Seoul National University Mutually Beneficial Interplay Between Selection Fairness and Context Diversity in Contextual Bandits
Patrick Rebeschini University of Oxford Optimal Regularization for LLM Alignment
Jose Renau University of California, Santa Cruz Verification Constrained Hardware Optimization using Intelligent Design Agentic Programming
Vilma Todri Emory University Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations
Aravindan Vijayaraghavan Northwestern University Human-Aligned Uncertainty Quantification in High Dimensions
Wei Yang University of Texas at Dallas Optimizing RISC-V Compilers with RISC-LLM and Syntax Parsing
Huaxiu Yao University of North Carolina at Chapel Hill Aligning Long Videos and Language as Long-Horizon World Models
Amy Zhang University of Washington Tools for Governing AI Agent Autonomy
Ruqi Zhang Purdue University Efficient Test-time Alignment for Large Language Models and Large Multimodal Models
Zheng Zhang Rutgers University-New Brunswick AlphaQC: An AI-powered Quantum Circuit Optimizer and Denoiser

AWS Cryptography

Recipient University Research title
Alexandra Boldyreva Georgia Institute of Technology Quantifying Information Leakage in Searchable Encryption Protocols
Maria Eichlseder Graz University of Technology, Austria SALAD – Systematic Analysis of Lightweight Ascon-based Designs
Venkatesan Guruswami University of California, Berkeley Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing
Joseph Jaeger Georgia Institute of Technology Analyzing Chat Encryption for Group Messaging
Aayush Jain Carnegie Mellon Large Scale Multiparty Silent Preprocessing for MPC from LPN
Huijia Lin University of Washington Large Scale Multiparty Silent Preprocessing for MPC from LPN
Hamed Nemati KTH Royal Institute of Technology Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary
Karl Palmskog KTH Royal Institute of Technology Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary
Chris Peikert University of Michigan, Ann Arbor Practical Third-Generation FHE and Bootstrapping
Dimitrios Skarlatos Carnegie Mellon University Scale-Out FHE LLMs on GPUs
Vinod Vaikuntanathan Massachusetts Institute of Technology Can Quantum Computers (Really) Factor?
Daniel Wichs Northeastern University Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing
David Wu University Of Texas At Austin Fast Private Information Retrieval and More using Homomorphic Encryption

Sustainability

Recipient University Research title
Meeyoung Cha Max Planck Institute Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring
Jingrui He University of Illinois at Urbana–Champaign Foundation Model Enabled Earth’s Ecosystem Monitoring
Pedro Lopes University of Chicago AI-powered Tools that Enable Engineers to Make & Re-make Sustainable Hardware
Cheng Yaw Low Max Planck Institute Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring





Source link

Continue Reading

Events & Conferences

Independent evaluations demonstrate Nova Premier’s safety

Published

on


AI safety is a priority at Amazon. Our investment in safe, transparent, and responsible AI (RAI) includes collaboration with the global community and policymakers. We are members of and collaborate with organizations such as the Frontier Model Forum, the Partnership on AI, and other forums organized by government agencies such as the National Institute of Standards and Technology (NIST). Consistent with Amazon’s endorsement of the Korea Frontier AI Safety Commitments, we published our Frontier Model Safety Framework earlier this year.

Amazon Nova Premier’s guardrails help prevent generation of unsafe content.

During the development of the Nova Premier model, we conducted a comprehensive evaluation to assess its performance and safety. This included testing on both internal and public benchmarks and internal/automated and third-party red-teaming exercises. Once the final model was ready, we prioritized obtaining unbiased, third-party evaluations of the model’s robustness against RAI controls. In this post, we outline the key findings from these evaluations, demonstrating the strength of our testing approach and Amazon Premier’s standing as a safe model. Specifically, we cover our evaluations with two third-party evaluators: PRISM AI and ActiveFence.

Evaluation of Nova Premier against PRISM AI

PRISM Eval’s Behavior Elicitation Tool (BET) dynamically and systematically stress-tests AI models’ safety guardrails. The methodology focuses on measuring how many adversarial attempts (steps) it takes to get a model to generate harmful content across several key risk dimensions. The central metric is “steps to elicit” — the number of increasingly sophisticated prompting attempts required before a model generates an inappropriate response. A higher number of steps indicates stronger safety measures, as the model is more resistant to manipulation. The PRISM risk dimensions (inspired by the MLCommons AI Safety Benchmarks) include CBRNE weapons, violent crimes, non-violent crimes, defamation, and hate, amongst several others.

Related content

From reinforcement learning and supervised fine-tuning to guardrail models and image watermarking, responsible AI was foundational to the design and development of the Amazon Nova family of models.

Using the BET Eval tool and its V1.0 metric, which is tailored toward non-reasoning models, we compared the recently released Nova models (Pro and Premier) to the latest models in the same class: Claude (3.5 v2 and 3.7 non-reasoning) and Llama4 Maverick, all available through Amazon Bedrock. PRISM BET conducts black-box evaluations (where model developers don’t have access to the test prompts) of models integrated with their API. The evaluation conducted with BET Eval MAX, PRISM’s most comprehensive/aggressive testing suite, revealed significant variations in safety against malicious instructions. Nova models demonstrated superior overall safety performance, with an average of 43 steps for Premier and 52 steps for Pro, compared to 37.7 for Claude 3.5 v2 and fewer than 12 steps for other models in the comparison set (namely, 9.9 for Claude3.7, 11.5 for Claude 3.7 thinking, and 6.5 for Maverick). This higher step count suggests that on average, Nova’s safety guardrails are more sophisticated and harder to circumvent through adversarial prompting. The figure below presents the number of steps per harm category evaluated through BET Eval MAX.

Results of tests using PRISM’s BET Eval MAX testing suite.

The PRISM evaluation provides valuable insights into the relative safety of different Amazon Bedrock models. Nova’s strong performance, particularly in hate speech and defamation resistance, represents meaningful progress in AI safety. However, the results also highlight the ongoing challenge of building truly robust safety measures into AI systems. As the field continues to evolve, frameworks like BET will play an increasingly important role in benchmarking and improving AI safety. As a part of this collaboration Nicolas Miailhe, CEO of PRISM Eval, said, “It’s incredibly rewarding for us to see Nova outperforming strong baselines using the BET Eval MAX; our aim is to build a long-term partnership toward safer-by-design models and to make BET available to various model providers.” Organizations deploying AI systems should carefully consider these safety metrics when selecting models for their applications.

Manual red teaming with ActiveFence

The AI safety & security company ActiveFence benchmarked Nova Premier on Bedrock on prompts distributed across Amazon’s eight core RAI categories. ActiveFence also evaluated Claude 3.7 (non-reasoning mode) and GPT 4.1 API on the same set. The flag rate on Nova Premier was lower than that on the other two models, indicating that Nova Premier is the safest of the three.

Model 3P Flag Rate [↓ is better]
Nova Premier 12.0%
Sonnet 3.7 (non-reasoning) 20.6%
GPT4.1 API 22.4%

Related content

Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

“Our role is to think like an adversary but act in service of safety,” said Guy Paltieli from ActiveFence. “By conducting a blind stress test of Nova Premier under realistic threat scenarios, we helped evaluate its security posture in support of Amazon’s broader responsible-AI goals, ensuring the model could be deployed with greater confidence.”

These evaluations conducted with PRISM and ActiveFence give us confidence in the strength of our guardrails and our ability to protect our customers’ safety when they use our models. While these evaluations demonstrate strong safety performance, we recognize that AI safety is an ongoing challenge requiring continuous improvement. These assessments represent a point-in-time snapshot, and we remain committed to regular testing and enhancement of our safety measures. No AI system can guarantee perfect safety in all scenarios, which is why we maintain monitoring and response systems after deployment.

Acknowledgments: Vincent Ponzo, Elyssa Vincent





Source link

Continue Reading

Trending