AI Research
Optimizing LLM-based trip planning
Many real-world planning tasks involve both harder “quantitative” constraints (e.g., budgets or scheduling requirements) and softer “qualitative” objectives (e.g., user preferences expressed in natural language). Consider someone planning a week-long vacation. Typically, this planning would be subject to various clearly quantifiable constraints, such as budget, travel logistics, and visiting attractions only when they are open, in addition to a number of constraints based on personal interests and preferences that aren’t easily quantifiable.
Large language models (LLMs) are trained on massive datasets and have internalized an impressive amount of world knowledge, often including an understanding of typical human preferences. As such, they are generally good at taking into account the not-so-quantifiable parts of trip planning, such as the ideal time to visit a scenic view or whether a restaurant is kid-friendly. However, they are less reliable at handling quantitative logistical constraints, which may require detailed and up-to-date real-world information (e.g., bus fares, train schedules, etc.) or complex interacting requirements (e.g., minimizing travel across multiple days). As a result, LLM-generated plans can at times include impractical elements, such as visiting a museum that would be closed by the time you can travel there.
We recently introduced AI trip ideas in Search, a feature that suggests day-by-day itineraries in response to trip-planning queries. In this blog, we describe some of the work that went into overcoming one of the key challenges in launching this feature: ensuring the produced itineraries are practical and feasible. Our solution employs a hybrid system that uses an LLM to suggest an initial plan combined with an algorithm that jointly optimizes for similarity to the LLM plan and real-world factors, such as travel time and opening hours. This approach integrates the LLM’s ability to handle soft requirements with the algorithmic precision needed to meet hard logistical constraints.
AI Research
The new frontier of medical malpractice
Although the beginnings of modern artificial intelligence (AI) can be traced
as far back as 1956, modern generative AI, the most famous example of which is
arguably ChatGPT, only began emerging in 2019. For better or worse, the steady
rise of generative AI has increasingly impacted the medical field. At this time, AI has begun to advance in a way that creates
potential liability…
AI Research
Pharmaceutical Innovation Rises as Global Funding Surges and AI Reshapes Clinical Research – geneonline.com
AI Research
Radiomics-Based Artificial Intelligence and Machine Learning Approach for the Diagnosis and Prognosis of Idiopathic Pulmonary Fibrosis: A Systematic Review – Cureus
-
Funding & Business7 days ago
Kayak and Expedia race to build AI travel agents that turn social posts into itineraries
-
Jobs & Careers7 days ago
Mumbai-based Perplexity Alternative Has 60k+ Users Without Funding
-
Mergers & Acquisitions7 days ago
Donald Trump suggests US government review subsidies to Elon Musk’s companies
-
Funding & Business6 days ago
Rethinking Venture Capital’s Talent Pipeline
-
Jobs & Careers6 days ago
Why Agentic AI Isn’t Pure Hype (And What Skeptics Aren’t Seeing Yet)
-
Funding & Business4 days ago
Sakana AI’s TreeQuest: Deploy multi-model teams that outperform individual LLMs by 30%
-
Funding & Business1 week ago
From chatbots to collaborators: How AI agents are reshaping enterprise work
-
Jobs & Careers6 days ago
Astrophel Aerospace Raises ₹6.84 Crore to Build Reusable Launch Vehicle
-
Tools & Platforms6 days ago
Winning with AI – A Playbook for Pest Control Business Leaders to Drive Growth
-
Jobs & Careers4 days ago
Ilya Sutskever Takes Over as CEO of Safe Superintelligence After Daniel Gross’s Exit