Connect with us

AI Research

Safeguarding Third-Party AI Research | Stanford HAI

Published

on


Key Takeaways

  • Third-party AI research is essential to ensure that AI companies do not grade their own homework, but few companies actively protect or promote such research.

  • We found no major foundation model developers currently offer comprehensive protections for third-party evaluation. Instead, their policies often disincentivize it. 

  • A safe harbor for good-faith research should be a top priority for policymakers. It enables good-faith research and increases the scale, diversity, and independence of evaluations. 

Executive Summary

Third-party evaluation is a cornerstone of efforts to reduce the substantial risks posed by AI systems. AI is a vast field with thousands of highly specialized experts around the world who can help stress-test the most powerful systems. But few companies empower these researchers to test their AI systems, for fear of exposing flaws in their products. AI companies often block safety research with restrictive terms of service or by suspending researchers who report flaws.

In our paper, “A Safe Harbor for AI Evaluation and Red Teaming,” we assess the policies and practices of seven top developers of generative AI systems, finding that none offers comprehensive protections for third-party AI research. Unlike with cybersecurity, generative AI is a new field without well-established norms regarding flaw disclosure, safety standards, or mechanisms for conducting third-party research. We propose that developers adopt safe harbors to enable good-faith, adversarial testing of AI systems.

Introduction

Generative AI systems pose a wide range of potential risks, from enabling the creation of nonconsensual intimate imagery to facilitating the development of malware. Evaluating generative AI systems is crucial to understanding the technology, ensuring public accountability, and reducing these risks.

In July 2023, many prominent AI companies signed voluntary commitments at the White House, pledging to “incent third-party discovery and reporting of issues and vulnerabilities.” More than a year later, implementation of this commitment has been uneven. While some companies do reward researchers for finding security flaws in their AI systems, few companies strongly encourage research on safety or provide concrete protections for good-faith research practices. Instead, leading generative AI companies’ terms of service legally prohibit third-party safety and trustworthiness research, in effect threatening anyone who conducts such research with bans from their platforms or even legal action. For example, companies’ policies do not allow researchers to jailbreak AI systems like ChatGPT, Claude, or Gemini to assess potential threats to U.S. national security.

In March 2024, we penned an open letter signed by over 350 leading AI researchers and advocates calling for a safe harbor for third-party AI evaluation. The researchers noted that while security research on traditional software is protected by voluntary company protections (safe harbors), established vulnerability disclosure norms, and legal safeguards from the Department of Justice, AI safety and trustworthiness research lacks comparable protections.

Companies have continued to be opaque about key aspects of their most powerful AI systems, such as the data used to build their models. Developers of generative AI models tout the safety of their systems based on internal red teaming, but there is no way for the government or independent researchers to validate these results, as companies do not release reproducible evaluations.

Generative AI companies also impose barriers on their platforms that limit good-faith research. Similar issues plague social media: Companies have taken steps to prevent researchers and journalists from conducting investigations on their platforms that, together with federal legislation, have had a chilling effect on such research and worsened the spread of harmful content online. But conducting research on generative AI systems comes with additional challenges, as the content on generative AI platforms is not publicly available. Users need accounts to access AI-generated content, which can be restricted by the company that owns the platform. Many AI companies also block certain user requests and limit the functionality of their models to prevent researchers from unearthing issues related to safety or trustworthiness. The stakes are also higher for AI, which has the potential not only to turbocharge misinformation but also to provide U.S. adversaries like China and Russia with material strategic advantages.

To assess the state of independent evaluation for generative AI, our team of machine learning, law, and policy experts conducted a thorough review of seven major AI companies’ policies, access provisions, and related enforcement processes. We detail our experiences with evaluation of AI systems and potential barriers other third-party evaluators may face, and propose alternative practices and policies to enable broader community participation in AI evaluation.



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

AI Research

Now Artificial Intelligence (AI) for smarter prison surveillance in West Bengal – The CSR Journal

Published

on



Now Artificial Intelligence (AI) for smarter prison surveillance in West Bengal  The CSR Journal



Source link

Continue Reading

AI Research

OpenAI business to burn $115 billion through 2029 The Information

Published

on


OpenAI CEO Sam Altman walks on the day of a meeting of the White House Task Force on Artificial Intelligence (AI) Education in the East Room at the White House in Washington, D.C., U.S., September 4, 2025.

Brian Snyder | Reuters

OpenAI has sharply raised its projected cash burn through 2029 to $115 billion as it ramps up spending to power the artificial intelligence behind its popular ChatGPT chatbot, The Information reported on Friday.

The new forecast is $80 billion higher than the company previously expected, the news outlet said, without citing a source for the report.

OpenAI, which has become one of the world’s biggest renters of cloud servers, projects it will burn more than $8 billion this year, some $1.5 billion higher than its projection from earlier this year, the report said.

The company did not immediately respond to Reuters request for comment.

To control its soaring costs, OpenAI will seek to develop its own data center server chips and facilities to power its technology, The Information said.

OpenAI is set to produce its first artificial intelligence chip next year in partnership with U.S. semiconductor giant Broadcom, the Financial Times reported on Thursday, saying OpenAI plans to use the chip internally rather than make it available to customers.

The company deepened its tie-up with Oracle in July with a planned 4.5-gigawatts of data center capacity, building on its Stargate initiative, a project of up to $500 billion and 10 gigawatts that includes Japanese technology investor SoftBank. OpenAI has also added Alphabet’s Google Cloud among its suppliers for computing capacity.

The company’s cash burn will more than double to over $17 billion next year, $10 billion higher than OpenAI’s earlier projection, with a burn of $35 billion in 2027 and $45 billion in 2028, The Information said.

Read the complete report by The Information here.



Source link

Continue Reading

AI Research

The Energy Monster AI Is Creating

Published

on


We don’t really know how much energy artificial intelligence is consuming. There aren’t any laws currently on the books requiring AI companies to disclose their energy usage or environmental impact, and most firms therefore opt to keep that controversial information close to the vest. Plus, large language models are evolving all the time, increasing in both complexity and efficiency, complicating outside efforts to quantify the sector’s energy footprint. But while we don’t know exactly how much electricity data centers are eating up to power ever-increasing AI integration, we do know that it’s a whole lot. 

“AI’s integration into almost everything from customer service calls to algorithmic “bosses” to warfare is fueling enormous demand,” the Washington Post recently reported. “Despite dramatic efficiency improvements, pouring those gains back into bigger, hungrier models powered by fossil fuels will create the energy monster we imagine.”

And that energy monster is weighing heavily on the minds of policymakers around the world. Global leaders are busily wringing their hands over the potentially disastrous impact AI could have on energy security, especially in countries like Ireland, Saudi Arabia, and Malaysia, where planned data center development outpaces planned energy capacity. 

In a rush to keep ahead of a critical energy shortage, public and private entities involved on both the tech and energy sides of the issue have been rushing to increase energy production capacities by any means. Countries are in a rush to build new power plants as well as to keep existing energy projects online beyond their planned closure dates. Many of these projects are fossil fuel plants, causing outcry that indiscriminate integration of artificial intelligence is undermining the decarbonization goals of nations and tech firms the world over. 

“From the deserts of the United Arab Emirates to the outskirts of Ireland’s capital, the energy demands of AI applications and training running through these centres are driving the surge of investment into fossil fuels,” reports the Financial Times. Globally, more than 85 gas-powered facilities are currently being built to meet AI’s energy demand according to figures from Global Energy Monitor.

In the United States, the demand surge is leading to the resurrection of old coal plants. Coal has been in terminal decline for years now in the U.S., and a large number of defunct plants are scattered around the country with valuable infrastructure that could lend itself to a speedy new power plant hookup. Thanks to the AI revolution, many of these plants are now set to come back online as natural gas-fired plants. While gas is cleaner than coal, the coal-to-gas route may come at the expense of clean energy projects that could have otherwise used the infrastructure and coveted grid hookups of defunct coal-fired power plants. 

“Our grid isn’t short on opportunity — it’s short on time,” Carson Kearl, Enverus senior analyst for energy and AI, recently told Fortune. “These grid interconnections are up for grabs for new power projects when these coal plants roll off. The No. 1 priority for Big Tech has changed to [speed] to energy, and this is the fastest way to go in a lot of cases,” Kearl continued.

Last year, Google stated that the company’s carbon emissions had skyrocketed by a whopping 48 percent over the last five years thanks to its AI integration. “AI-powered services involve considerably more computer power – and so electricity – than standard online activity, prompting a series of warnings about the technology’s environmental impact,” the BBC reported last summer. Google had previously pledged to reach net zero greenhouse gas emissions by 2030, but the company now concedes that “as we further integrate AI into our products, reducing emissions may be challenging.”

By Haley Zaremba for Oilprice.com 

More Top Reads From Oilprice.com





Source link

Continue Reading

Trending