Connect with us

AI Research

AI Transformation in NHS Faces Key Challenges: Study

Published

on


Implementing artificial intelligence (AI) into NHS hospitals is far harder than initially anticipated, with complications around governance, harmonisation with old IT systems and finding the right AI tools and staff training, finds a major new UK study led by UCL researchers.

The authors of the study, published in The Lancet eClinicalMedicine, say the findings should provide timely and useful learning for the UK Government, whose recent 10-year NHS plan identifies digital transformation, including AI, as a key platform to improving the service and patient experience.

In 2023, NHS England launched a programme to introduce AI to help diagnose chest conditions, including lung cancer, across 66 NHS hospital trusts in England, backed by £21 million in funding. The trusts are grouped into 12 imaging diagnostic networks: these hospital networks mean more patients have access to specialist opinions. Key functions of these AI tools included prioritising critical cases for specialist review and supporting specialists’ decisions by highlighting abnormalities on scans.

Funded by the National Institute for Health and Care Research (NIHR), this research was conducted by a team from UCL, the Nuffield Trust, and the University of Cambridge, analysing how procurement and early deployment of the AI tools went. The study is one of the first studies to analyse real-world implementation of AI in healthcare.

Evidence from previous studies, mostly laboratory-based, suggested that AI might benefit diagnostic services by supporting decisions, improving detection accuracy, reducing errors and easing workforce burdens.

In this UCL-led study, the researchers reviewed how the new diagnostic tools were procured and set up through interviews with hospital staff and AI suppliers, identifying any pitfalls but also any factors that helped smooth the process.

They found that setting up the AI tools took longer than anticipated by the programme’s leadership. Contracting took between four and 10 months longer than anticipated and by June 2025, 18 months after contracting was meant to be completed, a third (23 out of 66) of the hospital trusts were not yet using the tools in clinical practice.

Key challenges included engaging clinical staff with already high workloads in the project, embedding the new technology in ageing and varied NHS IT systems across dozens of hospitals and a general lack of understanding, and scepticism, among staff about using AI in healthcare.

The study also identified important factors which helped embed AI including national programme leadership and local imaging networks sharing resources and expertise, high levels of commitment from hospital staff leading implementation, and dedicated project management.

The researchers concluded that while “AI tools may offer valuable support for diagnostic services, they may not address current healthcare service pressures as straightforwardly as policymakers may hope” and are recommending that NHS staff are trained in how AI can be used effectively and safely and that dedicated project management is used to implement schemes like this in the future.

First author Dr Angus Ramsay (UCL Department of Behavioural Science and Health) said: “In July ministers unveiled the Government’s 10-year plan for the NHS, of which a digital transformation is a key platform.

“Our study provides important lessons that should help strengthen future approaches to implementing AI in the NHS.

“We found it took longer to introduce the new AI tools in this programme than those leading the programme had expected.

“A key problem was that clinical staff were already very busy – finding time to go through the selection process was a challenge, as was supporting integration of AI with local IT systems and obtaining local governance approvals. Services that used dedicated project managers found their support very helpful in implementing changes, but only some services were able to do this.

“Also, a common issue was the novelty of AI, suggesting a need for more guidance and education on AI and its implementation.

“AI tools can offer valuable support for diagnostic services, but they may not address current healthcare service pressures as simply as policymakers may hope.”

The researchers conducted their evaluation between March and September last year, studying 10 of the participating networks and focusing in depth on six NHS trusts. They interviewed network teams, trust staff and AI suppliers, observed planning, governance and training and analysed relevant documents.

Some of the imaging networks and many of the hospital trusts within them were new to procuring and working with AI.

The problems involved in setting up the new tools varied – for example, in some cases those procuring the tools were overwhelmed by a huge amount of very technical information, increasing the likelihood of key details being missed. Consideration should be given to creating a national approved shortlist of potential suppliers to facilitate procurement at local level, the researchers said.

Another problem was initial lack of enthusiasm among some NHS staff for the new technology in this early phase, with some more senior clinical staff raising concerns about the potential impact of AI making decisions without clinical input and on where accountability lay in the event a condition was missed. The researchers found the training offered to staff did not address these issues sufficiently across the wider workforce – hence their call for early and ongoing training on future projects.

In contrast, however, the study team found the process of procurement was supported by advice from the national team and imaging networks learning from each other. The researchers also observed high levels of commitment and collaboration between local hospital teams (including clinicians and IT) working with AI supplier teams to progress implementation within hospitals.

Senior author Professor Naomi Fulop (UCL Department of Behavioural Science and Health) said: “In this project, each hospital selected AI tools for different reasons, such as focusing on X-ray or CT scanning, and purposes, such as to prioritise urgent cases for review or to identify potential symptoms.

“The NHS is made up of hundreds of organisations with different clinical requirements and different IT systems and introducing any diagnostic tools that suit multiple hospitals is highly complex. These findings indicate AI might not be the silver bullet some have hoped for but the lessons from this study will help the NHS implement AI tools more effectively.”

Limitations

While the study has added to the very limited body of evidence on the implementation and use of AI in real-world settings, it focused on procurement and early deployment. The researchers are now studying the use of AI tools following early deployment when they have had a chance to become more embedded. Further, the researchers did not interview patients and carers and are therefore now conducting such interviews to address important gaps in knowledge about patient experiences and perspectives, as well as considerations of equity.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

AI Research

Augment Raises $85 Million for AI Teammate for Logistics

Published

on

By


Augment raised $85 million in a Series A funding round to accelerate the development of its artificial intelligence teammate for logistics, Augie.

The company will use the new capital to hire more than 50 engineers to “push the frontier of agentic AI” and to expand Augie into more logistics workflows for shippers, brokers, carriers and distributors, according to a Sept. 4 press release.

Augie performs tasks in quoting, dispatch, tracking, appointment scheduling, document collection and billing, the release said. It understands the context of every shipment and acts across email, phone, TMS, portals and chat.

“Logistics runs on millions of decisions—under pressure, across fragmented systems and with too many tabs open,” Augment co-founder and CEO Harish Abbott said in the release. “Augie doesn’t just assist. It takes ownership.”

Augment launched out of stealth five months ago, and the Series A funding brings its total capital raised to $110 million, according to the release.

When announcing the company’s launch in a March 18 blog post, Abbott said Augie does all the tedious work so that staff can focus on more important tasks.

“What exactly does Augie do?” Abbott said in the post. “Augie can read/write documents, respond to emails, make calls and receive calls, log into systems, do data entry and document uploads.”

Augie is now used by dozens of third-party logistics providers and shippers and supports more than $35 billion in freight under management, per the Sept. 4 press release.

Customers have reported a 40% reduction in invoice delays, an eight-day acceleration in billing cycles, 5% or greater gross margin recovery per load and, across all customers, millions of dollars in track and trace payroll savings, the release said.

Jacob Effron, managing director at Redpoint Ventures, which led the funding round, said in the release that Augment is “creating the system of work the logistics industry has always needed.”

“Customers consistently highlight Augment’s speed, deeply collaborative approach and transformative impact on productivity,” Effron said.

In another development in the space, Authentica said Tuesday (Sept. 9) that it launched an AI platform designed to deliver real-time supply chain visibility and automate compliance.

In May, AI logistics software startup Pallet raised $27 million in a Series B funding round.

For all PYMNTS B2B coverage, subscribe to the daily B2B Newsletter.



Source link

Continue Reading

AI Research

The race to power artificial intelligence

Published

on


The United States is experiencing a significant increase in electricity demand due to the rapid growth of artificial intelligence technologies. According to an analysis from Berkeley Lab, data centers currently consume about 4.4% of all U.S. electricity, a figure expected to rise sharply as AI models require more power. By 2028, over half of this consumption could be attributed to AI alone, equivalent to powering 22% of all U.S. households.

Most of this electricity is generated from fossil fuels, with data centers operating on grids that emit 48% more carbon than the national average, said a report from MIT Technology Review. While companies like Meta and Microsoft are investing in nuclear power, natural gas remains the primary energy source.

In response to the growing demand, President Donald Trump signed an executive order in April directing the Department of Energy to expedite emergency approvals for power plants to operate at full capacity during peak demand. The order also mandates the development of a uniform methodology to assess reserve margins and identify critical power plants essential for grid reliability.

Despite these measures, concerns remain about the U.S.’s ability to provide the 24/7 power required by AI, especially as China implements plans to ensure reliable electricity for data centers. According to reporting from Forbes, “the U.S. does not have a coherent and continuing energy plan of any type. China’s central planning allows for development and sustainability, while the U.S. approach to energy changes every four years”.



Source link

Continue Reading

AI Research

House bill targets rising rural utility costs from AI data centers

Published

on


Surging utility bills linked to artificial intelligence data centers would get a closer look from a trio of federal agencies under a new bipartisan bill in the House.

The Unleashing Low-Cost Rural AI Act from Reps. Jim Costa, D-Calif., and Blake Moore, R-Utah, would require the Energy, Interior and Agriculture departments to examine the effect AI data center buildouts are having on rural America.

“AI Data Centers are expanding rapidly and using more energy and water than entire cities. That energy demand is driving up utility costs for consumers,” Costa said in a press release Thursday. “My legislation ensures we take a hard look at how this growth impacts rural communities that are powering the AI industry, and make sure families aren’t left paying the price.  

“But at the same time,” he continued, “it’s important that rural communities are not left behind in the new opportunities that AI data centers will provide for agricultural sciences and an improved ability to compete in this modern era.”

The rapid construction of AI data centers across the country — especially in rural areas — has led to a spike in energy demand that has dramatically driven up utility costs for consumers. The lawmakers’ press release cited a stat from PJM — the world’s largest energy market, spanning 13 states — that said data centers have led to an additional $9.3 billion in costs for ratepayers.

The AI Action Plan released by President Donald Trump in July featured several callouts to the importance of expanded energy capacity through streamlined permitting and fewer environmental regulations. The plan also sought to make federal lands “available for data center construction and the construction of power generation infrastructure for those data centers.”

Moore said in the press release that Utah is “a prime location” for AI infrastructure and data centers, but “cementing” the state’s innovation bona fides “will require identifying rural areas ready for data expansion, streamlining permitting for new energy projects, and promoting the co-location of data centers with energy facilities.” 

“These efforts will power our growing digital demands without passing costs on to families,” he added. “I’m grateful to partner with Representative Costa to introduce the Unleashing Low-Cost Rural AI Act to identify other areas of the country, like Utah, that will advance solutions to meet our energy needs.”

Under the bill, the Energy, Interior and Agriculture would team up to study the impact of AI data center expansions in rural parts of the country, in addition to identifying areas that appear to be strong candidates for tech expansion. They would also assess the impact data center expansion might have on consumer costs, as well as energy supply and reliability. 

The agencies would also be charged with examining ways current energy infrastructure may be upgraded to allow AI data centers to coexist alongside those power facilities. There will also be reviews of nuclear and geothermal energy, solar, wind and hydro power, battery storage, and carbon capture.

According to a piece published last month in the Tech Policy Press, global energy use by data centers has jumped 12% annually over the past seven years, with projections that it will more than double by 2030.  

“As providers of the largest and most compute-intensive AI models keep adding them into more and more aspects of our digital lives with little regard for efficiency (and without giving users much of a choice), they grow increasingly dependent on a growing share of the existing energy and natural resources, leading to rising costs for everyone else,” the authors warned.


Written by Matt Bracken

Matt Bracken is the managing editor of FedScoop and CyberScoop, overseeing coverage of federal government technology policy and cybersecurity.

Before joining Scoop News Group in 2023, Matt was a senior editor at Morning Consult, leading data-driven coverage of tech, finance, health and energy. He previously worked in various editorial roles at The Baltimore Sun and the Arizona Daily Star.

You can reach him at matt.bracken@scoopnewsgroup.com.



Source link

Continue Reading

Trending