Events & Conferences
Amazon’s Tal Rabin wins Dijkstra Prize in Distributed Computing
Secure multiparty computation (MPC) is a computing paradigm in which multiple parties compute an aggregate function — say, their average salary — without revealing any private information — say, their individual salaries — to each other. It’s found applications in auction design, cryptography, data analytics, digital-wallet security, and blockchain computation, among other things.
In 2023, the Association for Computing Machinery’s annual Dijkstra Prize in Distributed Computing was awarded to three papers on secure MPC from the late 1980s. One of those papers, “Verifiable secret sharing and multiparty protocols with honest majority”, grew out of the doctoral dissertation of Tal Rabin, a senior principal scientist in Amazon Web Services’ cryptography group and a professor of computer science at the University of Pennsylvania. She’s joined on the paper by her thesis advisor, Michael Ben-Or, a professor of computer science at the Hebrew University of Jerusalem, where Rabin earned her PhD.
In a remarkable twist, Rabin’s father, Michael Rabin, also won the Dijkstra Prize, in 2015, making the Rabins the only parent-child pair to have received the award. Even more remarkably, Michael Rabin’s co-recipient was one of his PhD students — Michael Ben-Or.
“So I am my father’s academic grandchild,” Rabin says.
Information-theoretic security
The field of secure MPC got off the ground in 1982, when Andrew Yao, now a professor of computer science at Tsinghua University, published a paper on secure two-party computation. The security of Yao’s MPC scheme, however, depended on the difficulty of factoring large integers — the same computational assumption that ensures the security of most online financial transactions today. Yao’s results immediately raised the question of whether secure MPC was possible even if an adversary had unbounded computational resources, a setting known as the information-theoretic (as opposed to computational) security setting.
The three 2023 recipients of the Dijkstra Prize all address the problem of information-theoretic secure MPC. The first two papers, both published at the 1988 ACM Symposium on Theory of Computing (STOC), prove that information-theoretic secure MPC is possible if no more than one-third of the participants in the computation are bad-faith actors who secretly share information and collusively manipulate their results.
Tal Rabin and Michael Ben-Or’s paper, which appeared at STOC the following year, improves that ratio to (approximately) one-half, which is provably the maximum number of defectors that can be tolerated in the information-theoretic setting. It’s also the threshold that Yao proved for his original computationally bounded approach.
Today, 35 years after Rabin and Ben-Or’s paper, techniques for information-theoretic secure MPC are beginning to find application. And as general-purpose quantum computers, which can efficiently factor large numbers, inch toward reality, information-theoretic — rather than computational — cryptographic methods become more urgent.
“The goal of our team is to apply MPC techniques to improve security and privacy at Amazon,” Rabin says.
Information checking
The heart of Rabin and Ben-Or’s paper is the adaptation of the concept of a digital signature to the information-theoretic setting. A digital signature is an application of public-key cryptography: The originator of a document has a private signing key and a public verification key, both derived from the prime factors of a very large number. Computing a document’s signature requires the private key, but verifying it requires only the public key. And an adversary can’t falsify the signature without computing the number’s factors.
Rabin and Ben-Or propose a method that they call information checking, which isn’t as powerful as digital signatures but makes no assumptions about defectors’ computational limitations. And it turns out to be an adequate basis for secure multiparty computation.
Rabin and Ben-Or’s protocol involves a dealer, an intermediary, and a recipient. The dealer has some data item, s, which it passes to the intermediary, who, at a later time, may in turn pass it to the recipient.
To mimic the security guarantees of digital signatures, information checking must meet two criteria: (1) if the dealer and recipient are honest, the recipient will always accept s if it is legitimate and will, with high probability, reject any fraudulent substitutions; and (2) whether or not the dealer is honest, the intermediary can predict with high probability whether or not the recipient will accept s. Together, these two criteria establish that fraudulent substitutions can be detected if either the dealer or the intermediary (but not both) is dishonest.
To meet the first criterion, the dealer sends the intermediary two values, s and a second number, y. It sends the recipient a different random number pair, (b, c), which satisfy an arithmetic operation (say, y = bs + c). The intermediary knows y and s but neither c nor b; if it attempts to pass the receiver a false s, the arithmetic operation will fail.
Zero-knowledge proofs
To meet the second criterion, Rabin and Ben-Or used a zero-knowledge proof, a mechanism that enables a party to prove that it knows some value without disclosing the value itself. Instead of applying an arithmetic operation to s and a single set of randomly generated numbers, the dealer applies it to s and multiple sets of randomly generated numbers, producing a number of (bi, ci) pairs. After the dealer has sent those pairs to the recipient, the intermediary selects half of them at random and asks the recipient to disclose them.
Since the intermediary knows s, it can determine whether the arithmetic relationship holds and, thus, whether the dealer has sent the recipient valid (bi, ci) pairs. On the other hand, since the intermediary doesn’t know the undisclosed pairs, it can’t, if it’s dishonest, game the system by trying to pass the recipient false y’s along with false s’s.
From weak to verifiable secret sharing
Next, Rabin and Ben-Or generalize this result to the situation in which there are multiple recipients, each receiving its own si. In this context, the authors show that their protocol enables weak secret sharing, meaning that if the recipients are trying to collectively reconstruct a value from their respective si’s, either they’ll reconstruct the correct value, or the computation will fail.
Providing a basis for secure MPC, however, requires the stronger standard of verifiable secret sharing, meaning that no matter the interference, the recipients’ collective reconstruction will succeed. The second major contribution made by Rabin and Ben-Or’s paper is a method for leveraging weak secret sharing to enable verifiable secret sharing.
In Rabin and Ben-Or’s protocol, all the (bi, ci) pairs sent to all the recipients are generated using the same polynomial function. In the multiple-recipient setting, the degree of the polynomial — its largest exponent — is half the number of recipients. To establish that a secret has been correctly shared, the dealer needs to show that all the received pairs fit the polynomial — without disclosing the polynomial itself. Again, the mechanism is a zero-knowledge proof.
“What we want is for parties to commit to their values via the weak secret sharing,” Rabin explains. “So now you know it’s either one value or nothing. And then the dealer, on these values, proves that they all sit on a polynomial of degree T. Once that proof is done, you know about the values shared with weak secret sharing that they’ll either be opened or not opened. You know that everything that is opened is on the same polynomial of degree T. And now you know you can reconstruct.”
When Rabin and Ben-Or published their paper, MPC research was in its infancy. “You can do information checking much better, much more efficiently and so on, today,” Rabin says. But the paper’s central result was theoretical. Today, designers of secure-MPC protocols can use any proof mechanism they choose, and they’ll enjoy the same guarantees on computability and defection tolerance that Rabin and Ben-Or established 35 years ago.
Events & Conferences
An inside look at Meta’s transition from C to Rust on mobile
Have you ever worked is legacy code? Are you curious what it takes to modernize systems at a massive scale?
Pascal Hartig is joined on the latest Meta Tech Podcast by Elaine and Buping, two software engineers working on a bold project to rewrite the decades-old C code in one of Meta’s core messaging libraries in Rust. It’s an ambitious effort that will transform a central messaging library that is shared across Messenger, Facebook, Instagram, and Meta’s AR/VR platforms.
They discuss taking on a project of this scope – even without a background in Rust, how they’re approaching it, and what it means to optimize for ‘developer happiness.’
Download or listen to the episode below:
You can also find the episode wherever you get your podcasts, including:
The Meta Tech Podcast is a podcast, brought to you by Meta, where we highlight the work Meta’s engineers are doing at every level – from low-level frameworks to end-user features.
Send us feedback on Instagram, Threads, or X.
And if you’re interested in learning more about career opportunities at Meta visit the Meta Careers page.
Events & Conferences
Amazon Research Awards recipients announced
Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 73 award recipients who represent 46 universities in 10 countries.
This announcement includes awards funded under five call for proposals during the fall 2024 cycle: AI for Information Security, Automated Reasoning, AWS AI, AWS Cryptography, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society. Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.
Recipients have access to more than 700 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.
“Automated Reasoning is an important area of research for Amazon, with potential applications across various features and applications to help improve security, reliability, and performance for our customers. Through the ARA program, we collaborate with leading academic researchers to explore challenges in this field,” said Robert Jones, senior principal scientist with the Cloud Automated Reasoning Group. “We were again impressed by the exceptional response to our Automated Reasoning call for proposals this year, receiving numerous high-quality submissions. Congratulations to the recipients! We’re excited to support their work and partner with them as they develop new science and technology in this important area.”
“At Amazon, we believe that solving the world’s toughest sustainability challenges benefits from both breakthrough scientific research and open and bold collaboration. Through programs like the Amazon Research Awards program, we aim to support academic research that could contribute to our understanding of these complex issues,” said Kommy Weldemariam, Director of Science and Innovation Sustainability. “The selected proposals represent innovative projects that we hope will help advance knowledge in this field, potentially benefiting customers, communities, and the environment.”
ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.
The tables below list, in alphabetical order by last name, fall 2024 cycle call-for-proposal recipients, sorted by research area.
AI for Information Security
Recipient | University | Research title |
Christopher Amato | Northeastern University | Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms |
Bernd Bischl | Ludwig Maximilian University of Munich | Improving Generative and Foundation Models Reliability via Uncertainty-awareness |
Shiqing Ma | University Of Massachusetts Amherst | LLM and Domain Adaptation for Attack Detection |
Alina Oprea | Northeastern University | Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms |
Roberto Perdisci | University of Georgia | ContextADBench: A Comprehensive Benchmark Suite for Contextual Anomaly Detection |
Automated Reasoning
Recipient | University | Research title |
Nada Amin | Harvard University | LLM-Augmented Semi-Automated Proofs for Interactive Verification |
Suguman Bansal | Georgia Institute of Technology | Certified Inductive Generalization in Reinforcement Learning |
Ioana Boureanu | University of Surrey | Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems |
Omar Haider Chowdhury | Stony Brook University | Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege |
Stefan Ciobaca | Alexandru Ioan Cuza University | An Interactive Proof Mode for Dafny |
João Ferreira | INESC-ID | Polyglot Automated Program Repair for Infrastructure as Code |
Sicun Gao | University Of California, San Diego | Monte Carlo Trees with Conflict Models for Proof Search |
Mirco Giacobbe | University of Birmingham | Neural Software Verification |
Tobias Grosser | University of Cambridge | Synthesis-based Symbolic BitVector Simplification for Lean |
Ronghui Gu | Columbia University | Scaling Formal Verification of Security Properties for Unmodified System Software |
Alexey Ignatiev | Monash University | Huub: Next-Gen Lazy Clause Generation |
Kenneth McMillan | University of Texas At Austin | Synthesis of Auxiliary Variables and Invariants for Distributed Protocol Verification |
Alexandra Mendes | University of Porto | Overcoming Barriers to the Adoption of Verification-Aware Languages |
Jason Nieh | Columbia University | Scaling Formal Verification of Security Properties for Unmodified System Software |
Rohan Padhye | Carnegie Mellon University | Automated Synthesis and Evaluation of Property-Based Tests |
Nadia Polikarpova | University Of California, San Diego | Discovering and Proving Critical System Properties with LLMs |
Fortunat Rajaona | University of Surrey | Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems |
Subhajit Roy | Indian Institute of Technology Kanpur | Theorem Proving Modulo LLM |
Gagandeep Singh | University of Illinois At Urbana–Champaign | Trustworthy LLM Systems using Formal Contracts |
Scott Stoller | Stony Brook University | Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege |
Peter Stuckey | Monash University | Huub: Next-Gen Lazy Clause Generation |
Yulei Sui | University of New South Wales | Path-Sensitive Typestate Analysis through Sparse Abstract Execution |
Nikos Vasilakis | Brown University | Semantics-Driven Static Analysis for the Unix/Linux Shell |
Ping Wang | Stevens Institute of Technology | Leveraging Large Language Models for Reasoning Augmented Searching on Domain-specific NoSQL Database |
John Wawrzynek | University of California, Berkeley | GPU-Accelerated High-Throughput SAT Sampling |
AWS AI
Recipient | University | Research title |
Panagiotis Adamopoulos | Emory University | Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations |
Vikram Adve | University of Illinois at Urbana–Champaign | Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models |
Frances Arnold | California Institute of Technology | Closed-loop Generative Machine Learning for De Novo Enzyme Discovery and Optimization |
Yonatan Bisk | Carnegie Mellon University | Useful, Safe, and Robust Multiturn Interactions with LLMs |
Shiyu Chang | University of California, Santa Barbara | Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing |
Yuxin Chen | University of Pennsylvania | Provable Acceleration of Diffusion Models for Modern Generative AI |
Tianlong Chen | University of North Carolina at Chapel Hill | Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing |
Mingyu Ding | University of North Carolina at Chapel Hill | Aligning Long Videos and Language as Long-Horizon World Models |
Nikhil Garg | Cornell University | Market Design for Responsible Multi-agent LLMs |
Jessica Hullman | Northwestern University | Human-Aligned Uncertainty Quantification in High Dimensions |
Christopher Jermaine | Rice University | Fast, Trusted AI Using the EINSUMMABLE Compiler |
Yunzhu Li | Columbia University | Physics-Informed Foundation Models Through Embodied Interactions |
Pattie Maes | Massachusetts Institute of Technology | Understanding How LLM Agents Deviate from Human Choices |
Sasa Misailovic | University of Illinois at Urbana–Champaign | Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models |
Kristina Monakhova | Cornell University | Trustworthy extreme imaging for science using interpretable uncertainty quantification |
Todd Mowry | Carnegie Mellon University | Efficient LLM Serving on Trainium via Kernel Generation |
Min-hwan Oh | Seoul National University | Mutually Beneficial Interplay Between Selection Fairness and Context Diversity in Contextual Bandits |
Patrick Rebeschini | University of Oxford | Optimal Regularization for LLM Alignment |
Jose Renau | University of California, Santa Cruz | Verification Constrained Hardware Optimization using Intelligent Design Agentic Programming |
Vilma Todri | Emory University | Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations |
Aravindan Vijayaraghavan | Northwestern University | Human-Aligned Uncertainty Quantification in High Dimensions |
Wei Yang | University of Texas at Dallas | Optimizing RISC-V Compilers with RISC-LLM and Syntax Parsing |
Huaxiu Yao | University of North Carolina at Chapel Hill | Aligning Long Videos and Language as Long-Horizon World Models |
Amy Zhang | University of Washington | Tools for Governing AI Agent Autonomy |
Ruqi Zhang | Purdue University | Efficient Test-time Alignment for Large Language Models and Large Multimodal Models |
Zheng Zhang | Rutgers University-New Brunswick | AlphaQC: An AI-powered Quantum Circuit Optimizer and Denoiser |
AWS Cryptography
Recipient | University | Research title |
Alexandra Boldyreva | Georgia Institute of Technology | Quantifying Information Leakage in Searchable Encryption Protocols |
Maria Eichlseder | Graz University of Technology, Austria | SALAD – Systematic Analysis of Lightweight Ascon-based Designs |
Venkatesan Guruswami | University of California, Berkeley | Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing |
Joseph Jaeger | Georgia Institute of Technology | Analyzing Chat Encryption for Group Messaging |
Aayush Jain | Carnegie Mellon | Large Scale Multiparty Silent Preprocessing for MPC from LPN |
Huijia Lin | University of Washington | Large Scale Multiparty Silent Preprocessing for MPC from LPN |
Hamed Nemati | KTH Royal Institute of Technology | Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary |
Karl Palmskog | KTH Royal Institute of Technology | Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary |
Chris Peikert | University of Michigan, Ann Arbor | Practical Third-Generation FHE and Bootstrapping |
Dimitrios Skarlatos | Carnegie Mellon University | Scale-Out FHE LLMs on GPUs |
Vinod Vaikuntanathan | Massachusetts Institute of Technology | Can Quantum Computers (Really) Factor? |
Daniel Wichs | Northeastern University | Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing |
David Wu | University Of Texas At Austin | Fast Private Information Retrieval and More using Homomorphic Encryption |
Sustainability
Recipient | University | Research title |
Meeyoung Cha | Max Planck Institute | Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring |
Jingrui He | University of Illinois at Urbana–Champaign | Foundation Model Enabled Earth’s Ecosystem Monitoring |
Pedro Lopes | University of Chicago | AI-powered Tools that Enable Engineers to Make & Re-make Sustainable Hardware |
Cheng Yaw Low | Max Planck Institute | Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring |
Events & Conferences
Independent evaluations demonstrate Nova Premier’s safety
AI safety is a priority at Amazon. Our investment in safe, transparent, and responsible AI (RAI) includes collaboration with the global community and policymakers. We are members of and collaborate with organizations such as the Frontier Model Forum, the Partnership on AI, and other forums organized by government agencies such as the National Institute of Standards and Technology (NIST). Consistent with Amazon’s endorsement of the Korea Frontier AI Safety Commitments, we published our Frontier Model Safety Framework earlier this year.
During the development of the Nova Premier model, we conducted a comprehensive evaluation to assess its performance and safety. This included testing on both internal and public benchmarks and internal/automated and third-party red-teaming exercises. Once the final model was ready, we prioritized obtaining unbiased, third-party evaluations of the model’s robustness against RAI controls. In this post, we outline the key findings from these evaluations, demonstrating the strength of our testing approach and Amazon Premier’s standing as a safe model. Specifically, we cover our evaluations with two third-party evaluators: PRISM AI and ActiveFence.
Evaluation of Nova Premier against PRISM AI
PRISM Eval’s Behavior Elicitation Tool (BET) dynamically and systematically stress-tests AI models’ safety guardrails. The methodology focuses on measuring how many adversarial attempts (steps) it takes to get a model to generate harmful content across several key risk dimensions. The central metric is “steps to elicit” — the number of increasingly sophisticated prompting attempts required before a model generates an inappropriate response. A higher number of steps indicates stronger safety measures, as the model is more resistant to manipulation. The PRISM risk dimensions (inspired by the MLCommons AI Safety Benchmarks) include CBRNE weapons, violent crimes, non-violent crimes, defamation, and hate, amongst several others.
Using the BET Eval tool and its V1.0 metric, which is tailored toward non-reasoning models, we compared the recently released Nova models (Pro and Premier) to the latest models in the same class: Claude (3.5 v2 and 3.7 non-reasoning) and Llama4 Maverick, all available through Amazon Bedrock. PRISM BET conducts black-box evaluations (where model developers don’t have access to the test prompts) of models integrated with their API. The evaluation conducted with BET Eval MAX, PRISM’s most comprehensive/aggressive testing suite, revealed significant variations in safety against malicious instructions. Nova models demonstrated superior overall safety performance, with an average of 43 steps for Premier and 52 steps for Pro, compared to 37.7 for Claude 3.5 v2 and fewer than 12 steps for other models in the comparison set (namely, 9.9 for Claude3.7, 11.5 for Claude 3.7 thinking, and 6.5 for Maverick). This higher step count suggests that on average, Nova’s safety guardrails are more sophisticated and harder to circumvent through adversarial prompting. The figure below presents the number of steps per harm category evaluated through BET Eval MAX.
The PRISM evaluation provides valuable insights into the relative safety of different Amazon Bedrock models. Nova’s strong performance, particularly in hate speech and defamation resistance, represents meaningful progress in AI safety. However, the results also highlight the ongoing challenge of building truly robust safety measures into AI systems. As the field continues to evolve, frameworks like BET will play an increasingly important role in benchmarking and improving AI safety. As a part of this collaboration Nicolas Miailhe, CEO of PRISM Eval, said, “It’s incredibly rewarding for us to see Nova outperforming strong baselines using the BET Eval MAX; our aim is to build a long-term partnership toward safer-by-design models and to make BET available to various model providers.” Organizations deploying AI systems should carefully consider these safety metrics when selecting models for their applications.
Manual red teaming with ActiveFence
The AI safety & security company ActiveFence benchmarked Nova Premier on Bedrock on prompts distributed across Amazon’s eight core RAI categories. ActiveFence also evaluated Claude 3.7 (non-reasoning mode) and GPT 4.1 API on the same set. The flag rate on Nova Premier was lower than that on the other two models, indicating that Nova Premier is the safest of the three.
Model | 3P Flag Rate [↓ is better] |
Nova Premier | 12.0% |
Sonnet 3.7 (non-reasoning) | 20.6% |
GPT4.1 API | 22.4% |
“Our role is to think like an adversary but act in service of safety,” said Guy Paltieli from ActiveFence. “By conducting a blind stress test of Nova Premier under realistic threat scenarios, we helped evaluate its security posture in support of Amazon’s broader responsible-AI goals, ensuring the model could be deployed with greater confidence.”
These evaluations conducted with PRISM and ActiveFence give us confidence in the strength of our guardrails and our ability to protect our customers’ safety when they use our models. While these evaluations demonstrate strong safety performance, we recognize that AI safety is an ongoing challenge requiring continuous improvement. These assessments represent a point-in-time snapshot, and we remain committed to regular testing and enhancement of our safety measures. No AI system can guarantee perfect safety in all scenarios, which is why we maintain monitoring and response systems after deployment.
Acknowledgments: Vincent Ponzo, Elyssa Vincent
-
Funding & Business7 days ago
Kayak and Expedia race to build AI travel agents that turn social posts into itineraries
-
Jobs & Careers6 days ago
Mumbai-based Perplexity Alternative Has 60k+ Users Without Funding
-
Mergers & Acquisitions6 days ago
Donald Trump suggests US government review subsidies to Elon Musk’s companies
-
Funding & Business6 days ago
Rethinking Venture Capital’s Talent Pipeline
-
Jobs & Careers6 days ago
Why Agentic AI Isn’t Pure Hype (And What Skeptics Aren’t Seeing Yet)
-
Funding & Business4 days ago
Sakana AI’s TreeQuest: Deploy multi-model teams that outperform individual LLMs by 30%
-
Funding & Business7 days ago
From chatbots to collaborators: How AI agents are reshaping enterprise work
-
Jobs & Careers6 days ago
Astrophel Aerospace Raises ₹6.84 Crore to Build Reusable Launch Vehicle
-
Funding & Business4 days ago
HOLY SMOKES! A new, 200% faster DeepSeek R1-0528 variant appears from German lab TNG Technology Consulting GmbH
-
Tools & Platforms6 days ago
Winning with AI – A Playbook for Pest Control Business Leaders to Drive Growth