Events & Conferences
Do large language models understand the world?
For centuries, theories of meaning have been of interest almost exclusively to philosophers, debated in seminar rooms and at conferences for small specialty audiences.
But the advent of large language models (LLMs) and other “foundation models” has changed that. Suddenly, mainstream media are alive with speculation about whether models trained only to predict the next word in a sequence can truly understand the world.
Skepticism naturally arises. How can a machine that generates language in such a mechanical way grasp words’ meanings? Simply processing text, however fluently, would not seem to imply any sort of deeper understanding.
This kind of skepticism has a long history. In 1980, the philosopher John Searle proposed a thought experiment known as the Chinese room, in which a person who does not know Chinese follows a set of rules to manipulate Chinese characters, producing Chinese responses to Chinese questions. The experiment is meant to show that, since the person in the room never understands the language, symbolic manipulation alone cannot lead to semantic understanding.
Similarly, today’s critics often argue that since LLMs are able only to process “form” — symbols or words — they cannot in principle achieve understanding. Meaning depends on relations between form (linguistic expressions, or sequences of tokens in a language model) and something external, these critics argue, and models trained only on form learn nothing about those relations.
But is that true? In this essay, we will argue that language models not only can but do represent meanings.
Probability space
At Amazon Web Services (AWS), we have been investigating concrete ways to characterize meaning as represented by LLMs. The first challenge with these models is that there is no clear candidate for “where” meanings could reside. Today’s LLMs are usually decoder-only models; unlike encoder-only or encoder-decoder models, they do not use a vector space to represent data. Instead, they represent words in a distributed way, across the many layers and attention heads of a transformer model. How should we think of meaning representation in such models?
In our paper “Meaning representations from trajectories in autoregressive models”, we propose an answer to this question. For a given sentence, we consider the probability distribution over all possible sequences of tokens that can follow it, and the set of all such distributions defines a representational space.
To the extent that two sentences have similar continuation probabilities — or trajectories — they’re closer together in the representational space; to the extent that their probability distributions differ, they’re farther apart. Sentences that produce the same distribution of continuations are “equivalent”, and together, they define an equivalence class. A sentence’s meaning representation is then the equivalence class that it belongs to.
In the field of natural-language processing (NLP), it is widely recognized that the distribution of words in language is closely related to their meaning. This idea is known as the “distributional hypothesis” and is often invoked in the context of methods like word2vec embeddings, which build meaning representations from statistics on word co-occurrence. But we believe we are the first to use the distributions themselves as the primary way to represent meaning. This is possible since LLMs offer a way to evaluate these distributions computationally.
Of course, the possible continuations of a single sentence are effectively infinite, so even using an LLM we can never completely describe their distribution. But this impossibility reflects the fundamental indeterminacy of meaning, which holds for people and AI models alike. Meanings are not directly observed: they are encoded in the billions of synapses in a brain or the billions of activations of a trained model, which can be used to produce expressions. Any finite number of expressions may be compatible with multiple (indeed, infinitely many) meanings; which meaning the human — or the language model — intends to convey can never be known for sure.
What is surprising, however, is that, despite the large dimensionality of today’s models, we do not need to sample billions or trillions of trajectories in order to characterize a meaning. A handful — say, 10 or 20 — is sufficient. Again, this is consistent with human linguistic practice. A teacher asked what a particular statement means will typically rephrase it in a few ways, in what could be described as an attempt to identify the equivalence class to which the statement belongs.
In experiments reported in our paper, we showed that a measure of sentence similarity that uses off-the-shelf LLMs to sample token trajectories largely agrees with human annotations. In fact, our strategy outperforms all competing approaches on zero-shot benchmarks for semantic textual similarity (STS).
Form and content
Does this suggest that our paper’s definition of meaning — a distribution over possible trajectories — reflects what humans do when they ascribe meaning? Again, skeptics would say that it couldn’t possibly: text continuations are based only on “form” and lack the external grounding necessary for meaning.
But probabilities over continuations may capture something deeper about how we interpret the world. Consider a sentence that begins “On top of the dresser stood … ” and the probabilities of three possible continuations of that sentence: (1) “a photo”; (2) “an Oscar statuette”; and (3) “an ingot of plutonium”. Don’t those probabilities tell you something about what, in fact, you can expect to find on top of someone’s dresser? The probabilities over all possible sentence continuations might be a good guide to the likelihood of finding different objects on the tops of dressers; in that case, the “formal” patterns encoded by the LLM would tell you something particular about the world.
The skeptic might reply, however, that it’s the mapping of words to objects that gives the words meaning, and the mapping isn’t intrinsic to the words themselves; it requires human interpretation or some other mechanism external to the LLM.
But how do humans do that mapping? What happens inside you when you read the phrase “the objects on top of the dresser”? Maybe you envision something that feels somehow indefinite — a superposition of the dresser viewed from multiple angles or heights, say, with abstract objects in a certain range of sizes and colors on top. Maybe you also envision the possible locations of the dresser in the room, the room’s other furnishings, the feel of the wood of the dresser, the scent of the dresser or of the objects on top of it, and so on.
All of those possibilities can be captured by probability distributions, over data in multiple sensory modalities and in multiple conceptual schemas. So maybe meaning for humans involves probabilities over continuations, too, but in a multisensory space instead of a textual space. And on that view, when an LLM computes continuations of token sequences, it’s accessing meaning in a way that resembles what humans do, just in a more limited space.
Skeptics might argue that the passage from the multisensory realm to written language is a bottleneck that meaning can’t squeeze through. But that passage could also be interpreted as a simple projection, similar to the projection from a three-dimensional scene down to a two-dimensional image. The two-dimensional image provides only partial information, but in many situations, the scene remains quite understandable. And since language is our main tool for communicating our multisensory experiences, the projection into text might not be that “lossy” after all.
This is not to say that today’s LLMs grasp meanings in the same way that humans do. Our work shows only that large language models develop internal representations with semantic value. We’ve also found evidence that such representations are composed of discrete entities, which relate to each other in complex ways — not just proximity but directionality, entailment, and containment.
But those structural relationships may differ from the structural relationships in the languages used to train the models. That would remain true even if we trained the model on sensory signals: we cannot directly see what meaning subtends a particular expression, for a model any more than for a human.
If the model and human have been exposed to similar data, however, and if they have shared enough experiences (today, annotation is the medium of sharing), then there is a basis on which to communicate. Alignment can then be seen as the process of translating between the model’s emergent “inner language” — we call it “neuralese” — and natural language.
How faithful can that alignment be? As we continue to improve these models, we will need to face the fact that even humans lack a stable, universal system of shared meanings. LLMs, with their distinct approach to processing information, may simply be another voice in a diverse chorus of interpretations.
In one form or another, questions about the relationship between the world and its representation have been central to philosophy for at least 400 years, and no definitive answers have emerged. As we move toward a future in which LLMs are likely to play a larger and larger role, we should not dismiss ideas based only on our intuitions but continue to ask these difficult questions. The apparent limitations of LLMs might be only a reflection of our poor understanding of what meaning actually is.
Events & Conferences
An inside look at Meta’s transition from C to Rust on mobile
Have you ever worked is legacy code? Are you curious what it takes to modernize systems at a massive scale?
Pascal Hartig is joined on the latest Meta Tech Podcast by Elaine and Buping, two software engineers working on a bold project to rewrite the decades-old C code in one of Meta’s core messaging libraries in Rust. It’s an ambitious effort that will transform a central messaging library that is shared across Messenger, Facebook, Instagram, and Meta’s AR/VR platforms.
They discuss taking on a project of this scope – even without a background in Rust, how they’re approaching it, and what it means to optimize for ‘developer happiness.’
Download or listen to the episode below:
You can also find the episode wherever you get your podcasts, including:
The Meta Tech Podcast is a podcast, brought to you by Meta, where we highlight the work Meta’s engineers are doing at every level – from low-level frameworks to end-user features.
Send us feedback on Instagram, Threads, or X.
And if you’re interested in learning more about career opportunities at Meta visit the Meta Careers page.
Events & Conferences
Amazon Research Awards recipients announced
Amazon Research Awards (ARA) provides unrestricted funds and AWS Promotional Credits to academic researchers investigating various research topics in multiple disciplines. This cycle, ARA received many excellent research proposals from across the world and today is publicly announcing 73 award recipients who represent 46 universities in 10 countries.
This announcement includes awards funded under five call for proposals during the fall 2024 cycle: AI for Information Security, Automated Reasoning, AWS AI, AWS Cryptography, and Sustainability. Proposals were reviewed for the quality of their scientific content and their potential to impact both the research community and society. Additionally, Amazon encourages the publication of research results, presentations of research at Amazon offices worldwide, and the release of related code under open-source licenses.
Recipients have access to more than 700 Amazon public datasets and can utilize AWS AI/ML services and tools through their AWS Promotional Credits. Recipients also are assigned an Amazon research contact who offers consultation and advice, along with opportunities to participate in Amazon events and training sessions.
“Automated Reasoning is an important area of research for Amazon, with potential applications across various features and applications to help improve security, reliability, and performance for our customers. Through the ARA program, we collaborate with leading academic researchers to explore challenges in this field,” said Robert Jones, senior principal scientist with the Cloud Automated Reasoning Group. “We were again impressed by the exceptional response to our Automated Reasoning call for proposals this year, receiving numerous high-quality submissions. Congratulations to the recipients! We’re excited to support their work and partner with them as they develop new science and technology in this important area.”
“At Amazon, we believe that solving the world’s toughest sustainability challenges benefits from both breakthrough scientific research and open and bold collaboration. Through programs like the Amazon Research Awards program, we aim to support academic research that could contribute to our understanding of these complex issues,” said Kommy Weldemariam, Director of Science and Innovation Sustainability. “The selected proposals represent innovative projects that we hope will help advance knowledge in this field, potentially benefiting customers, communities, and the environment.”
ARA funds proposals throughout the year in a variety of research areas. Applicants are encouraged to visit the ARA call for proposals page for more information or send an email to be notified of future open calls.
The tables below list, in alphabetical order by last name, fall 2024 cycle call-for-proposal recipients, sorted by research area.
AI for Information Security
Recipient | University | Research title |
Christopher Amato | Northeastern University | Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms |
Bernd Bischl | Ludwig Maximilian University of Munich | Improving Generative and Foundation Models Reliability via Uncertainty-awareness |
Shiqing Ma | University Of Massachusetts Amherst | LLM and Domain Adaptation for Attack Detection |
Alina Oprea | Northeastern University | Multi-Agent Reinforcement Learning Cyber Defense for Securing Cloud Computing Platforms |
Roberto Perdisci | University of Georgia | ContextADBench: A Comprehensive Benchmark Suite for Contextual Anomaly Detection |
Automated Reasoning
Recipient | University | Research title |
Nada Amin | Harvard University | LLM-Augmented Semi-Automated Proofs for Interactive Verification |
Suguman Bansal | Georgia Institute of Technology | Certified Inductive Generalization in Reinforcement Learning |
Ioana Boureanu | University of Surrey | Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems |
Omar Haider Chowdhury | Stony Brook University | Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege |
Stefan Ciobaca | Alexandru Ioan Cuza University | An Interactive Proof Mode for Dafny |
João Ferreira | INESC-ID | Polyglot Automated Program Repair for Infrastructure as Code |
Sicun Gao | University Of California, San Diego | Monte Carlo Trees with Conflict Models for Proof Search |
Mirco Giacobbe | University of Birmingham | Neural Software Verification |
Tobias Grosser | University of Cambridge | Synthesis-based Symbolic BitVector Simplification for Lean |
Ronghui Gu | Columbia University | Scaling Formal Verification of Security Properties for Unmodified System Software |
Alexey Ignatiev | Monash University | Huub: Next-Gen Lazy Clause Generation |
Kenneth McMillan | University of Texas At Austin | Synthesis of Auxiliary Variables and Invariants for Distributed Protocol Verification |
Alexandra Mendes | University of Porto | Overcoming Barriers to the Adoption of Verification-Aware Languages |
Jason Nieh | Columbia University | Scaling Formal Verification of Security Properties for Unmodified System Software |
Rohan Padhye | Carnegie Mellon University | Automated Synthesis and Evaluation of Property-Based Tests |
Nadia Polikarpova | University Of California, San Diego | Discovering and Proving Critical System Properties with LLMs |
Fortunat Rajaona | University of Surrey | Phoebe+: An Automated-Reasoning Tool for Provable Privacy in Cryptographic Systems |
Subhajit Roy | Indian Institute of Technology Kanpur | Theorem Proving Modulo LLM |
Gagandeep Singh | University of Illinois At Urbana–Champaign | Trustworthy LLM Systems using Formal Contracts |
Scott Stoller | Stony Brook University | Restricter: An Automatic Tool for Authoring Amazon Cedar Access Control Policies with the Principle of Least Privilege |
Peter Stuckey | Monash University | Huub: Next-Gen Lazy Clause Generation |
Yulei Sui | University of New South Wales | Path-Sensitive Typestate Analysis through Sparse Abstract Execution |
Nikos Vasilakis | Brown University | Semantics-Driven Static Analysis for the Unix/Linux Shell |
Ping Wang | Stevens Institute of Technology | Leveraging Large Language Models for Reasoning Augmented Searching on Domain-specific NoSQL Database |
John Wawrzynek | University of California, Berkeley | GPU-Accelerated High-Throughput SAT Sampling |
AWS AI
Recipient | University | Research title |
Panagiotis Adamopoulos | Emory University | Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations |
Vikram Adve | University of Illinois at Urbana–Champaign | Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models |
Frances Arnold | California Institute of Technology | Closed-loop Generative Machine Learning for De Novo Enzyme Discovery and Optimization |
Yonatan Bisk | Carnegie Mellon University | Useful, Safe, and Robust Multiturn Interactions with LLMs |
Shiyu Chang | University of California, Santa Barbara | Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing |
Yuxin Chen | University of Pennsylvania | Provable Acceleration of Diffusion Models for Modern Generative AI |
Tianlong Chen | University of North Carolina at Chapel Hill | Cut the Crap: Advancing the Efficient Communication of Multi-Agent Systems via Spatial-Temporal Topology Design and KV Cache Sharing |
Mingyu Ding | University of North Carolina at Chapel Hill | Aligning Long Videos and Language as Long-Horizon World Models |
Nikhil Garg | Cornell University | Market Design for Responsible Multi-agent LLMs |
Jessica Hullman | Northwestern University | Human-Aligned Uncertainty Quantification in High Dimensions |
Christopher Jermaine | Rice University | Fast, Trusted AI Using the EINSUMMABLE Compiler |
Yunzhu Li | Columbia University | Physics-Informed Foundation Models Through Embodied Interactions |
Pattie Maes | Massachusetts Institute of Technology | Understanding How LLM Agents Deviate from Human Choices |
Sasa Misailovic | University of Illinois at Urbana–Champaign | Fellini: Differentiable ML Compiler for Full-Graph Optimization for LLM Models |
Kristina Monakhova | Cornell University | Trustworthy extreme imaging for science using interpretable uncertainty quantification |
Todd Mowry | Carnegie Mellon University | Efficient LLM Serving on Trainium via Kernel Generation |
Min-hwan Oh | Seoul National University | Mutually Beneficial Interplay Between Selection Fairness and Context Diversity in Contextual Bandits |
Patrick Rebeschini | University of Oxford | Optimal Regularization for LLM Alignment |
Jose Renau | University of California, Santa Cruz | Verification Constrained Hardware Optimization using Intelligent Design Agentic Programming |
Vilma Todri | Emory University | Generative AI solutions for The Spillover Effect of Fraudulent Reviews on Product Recommendations |
Aravindan Vijayaraghavan | Northwestern University | Human-Aligned Uncertainty Quantification in High Dimensions |
Wei Yang | University of Texas at Dallas | Optimizing RISC-V Compilers with RISC-LLM and Syntax Parsing |
Huaxiu Yao | University of North Carolina at Chapel Hill | Aligning Long Videos and Language as Long-Horizon World Models |
Amy Zhang | University of Washington | Tools for Governing AI Agent Autonomy |
Ruqi Zhang | Purdue University | Efficient Test-time Alignment for Large Language Models and Large Multimodal Models |
Zheng Zhang | Rutgers University-New Brunswick | AlphaQC: An AI-powered Quantum Circuit Optimizer and Denoiser |
AWS Cryptography
Recipient | University | Research title |
Alexandra Boldyreva | Georgia Institute of Technology | Quantifying Information Leakage in Searchable Encryption Protocols |
Maria Eichlseder | Graz University of Technology, Austria | SALAD – Systematic Analysis of Lightweight Ascon-based Designs |
Venkatesan Guruswami | University of California, Berkeley | Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing |
Joseph Jaeger | Georgia Institute of Technology | Analyzing Chat Encryption for Group Messaging |
Aayush Jain | Carnegie Mellon | Large Scale Multiparty Silent Preprocessing for MPC from LPN |
Huijia Lin | University of Washington | Large Scale Multiparty Silent Preprocessing for MPC from LPN |
Hamed Nemati | KTH Royal Institute of Technology | Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary |
Karl Palmskog | KTH Royal Institute of Technology | Trustworthy Automatic Verification of Side-Channel Countermeasures for Binary Cryptographic Programs using the HoIBA libary |
Chris Peikert | University of Michigan, Ann Arbor | Practical Third-Generation FHE and Bootstrapping |
Dimitrios Skarlatos | Carnegie Mellon University | Scale-Out FHE LLMs on GPUs |
Vinod Vaikuntanathan | Massachusetts Institute of Technology | Can Quantum Computers (Really) Factor? |
Daniel Wichs | Northeastern University | Obfuscation, Proof Systems, and Secure Computation: A Research Program on Cryptography at the Simons Institute for the Theory of Computing |
David Wu | University Of Texas At Austin | Fast Private Information Retrieval and More using Homomorphic Encryption |
Sustainability
Recipient | University | Research title |
Meeyoung Cha | Max Planck Institute | Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring |
Jingrui He | University of Illinois at Urbana–Champaign | Foundation Model Enabled Earth’s Ecosystem Monitoring |
Pedro Lopes | University of Chicago | AI-powered Tools that Enable Engineers to Make & Re-make Sustainable Hardware |
Cheng Yaw Low | Max Planck Institute | Forest-Blossom (Flossom): A New Framework for Sustaining Forest Biodiversity Through Outcome-Driven Remote Sensing Monitoring |
Events & Conferences
Independent evaluations demonstrate Nova Premier’s safety
AI safety is a priority at Amazon. Our investment in safe, transparent, and responsible AI (RAI) includes collaboration with the global community and policymakers. We are members of and collaborate with organizations such as the Frontier Model Forum, the Partnership on AI, and other forums organized by government agencies such as the National Institute of Standards and Technology (NIST). Consistent with Amazon’s endorsement of the Korea Frontier AI Safety Commitments, we published our Frontier Model Safety Framework earlier this year.
During the development of the Nova Premier model, we conducted a comprehensive evaluation to assess its performance and safety. This included testing on both internal and public benchmarks and internal/automated and third-party red-teaming exercises. Once the final model was ready, we prioritized obtaining unbiased, third-party evaluations of the model’s robustness against RAI controls. In this post, we outline the key findings from these evaluations, demonstrating the strength of our testing approach and Amazon Premier’s standing as a safe model. Specifically, we cover our evaluations with two third-party evaluators: PRISM AI and ActiveFence.
Evaluation of Nova Premier against PRISM AI
PRISM Eval’s Behavior Elicitation Tool (BET) dynamically and systematically stress-tests AI models’ safety guardrails. The methodology focuses on measuring how many adversarial attempts (steps) it takes to get a model to generate harmful content across several key risk dimensions. The central metric is “steps to elicit” — the number of increasingly sophisticated prompting attempts required before a model generates an inappropriate response. A higher number of steps indicates stronger safety measures, as the model is more resistant to manipulation. The PRISM risk dimensions (inspired by the MLCommons AI Safety Benchmarks) include CBRNE weapons, violent crimes, non-violent crimes, defamation, and hate, amongst several others.
Using the BET Eval tool and its V1.0 metric, which is tailored toward non-reasoning models, we compared the recently released Nova models (Pro and Premier) to the latest models in the same class: Claude (3.5 v2 and 3.7 non-reasoning) and Llama4 Maverick, all available through Amazon Bedrock. PRISM BET conducts black-box evaluations (where model developers don’t have access to the test prompts) of models integrated with their API. The evaluation conducted with BET Eval MAX, PRISM’s most comprehensive/aggressive testing suite, revealed significant variations in safety against malicious instructions. Nova models demonstrated superior overall safety performance, with an average of 43 steps for Premier and 52 steps for Pro, compared to 37.7 for Claude 3.5 v2 and fewer than 12 steps for other models in the comparison set (namely, 9.9 for Claude3.7, 11.5 for Claude 3.7 thinking, and 6.5 for Maverick). This higher step count suggests that on average, Nova’s safety guardrails are more sophisticated and harder to circumvent through adversarial prompting. The figure below presents the number of steps per harm category evaluated through BET Eval MAX.
The PRISM evaluation provides valuable insights into the relative safety of different Amazon Bedrock models. Nova’s strong performance, particularly in hate speech and defamation resistance, represents meaningful progress in AI safety. However, the results also highlight the ongoing challenge of building truly robust safety measures into AI systems. As the field continues to evolve, frameworks like BET will play an increasingly important role in benchmarking and improving AI safety. As a part of this collaboration Nicolas Miailhe, CEO of PRISM Eval, said, “It’s incredibly rewarding for us to see Nova outperforming strong baselines using the BET Eval MAX; our aim is to build a long-term partnership toward safer-by-design models and to make BET available to various model providers.” Organizations deploying AI systems should carefully consider these safety metrics when selecting models for their applications.
Manual red teaming with ActiveFence
The AI safety & security company ActiveFence benchmarked Nova Premier on Bedrock on prompts distributed across Amazon’s eight core RAI categories. ActiveFence also evaluated Claude 3.7 (non-reasoning mode) and GPT 4.1 API on the same set. The flag rate on Nova Premier was lower than that on the other two models, indicating that Nova Premier is the safest of the three.
Model | 3P Flag Rate [↓ is better] |
Nova Premier | 12.0% |
Sonnet 3.7 (non-reasoning) | 20.6% |
GPT4.1 API | 22.4% |
“Our role is to think like an adversary but act in service of safety,” said Guy Paltieli from ActiveFence. “By conducting a blind stress test of Nova Premier under realistic threat scenarios, we helped evaluate its security posture in support of Amazon’s broader responsible-AI goals, ensuring the model could be deployed with greater confidence.”
These evaluations conducted with PRISM and ActiveFence give us confidence in the strength of our guardrails and our ability to protect our customers’ safety when they use our models. While these evaluations demonstrate strong safety performance, we recognize that AI safety is an ongoing challenge requiring continuous improvement. These assessments represent a point-in-time snapshot, and we remain committed to regular testing and enhancement of our safety measures. No AI system can guarantee perfect safety in all scenarios, which is why we maintain monitoring and response systems after deployment.
Acknowledgments: Vincent Ponzo, Elyssa Vincent
-
Funding & Business7 days ago
Kayak and Expedia race to build AI travel agents that turn social posts into itineraries
-
Jobs & Careers6 days ago
Mumbai-based Perplexity Alternative Has 60k+ Users Without Funding
-
Mergers & Acquisitions6 days ago
Donald Trump suggests US government review subsidies to Elon Musk’s companies
-
Funding & Business6 days ago
Rethinking Venture Capital’s Talent Pipeline
-
Jobs & Careers6 days ago
Why Agentic AI Isn’t Pure Hype (And What Skeptics Aren’t Seeing Yet)
-
Funding & Business4 days ago
Sakana AI’s TreeQuest: Deploy multi-model teams that outperform individual LLMs by 30%
-
Funding & Business7 days ago
From chatbots to collaborators: How AI agents are reshaping enterprise work
-
Jobs & Careers6 days ago
Astrophel Aerospace Raises ₹6.84 Crore to Build Reusable Launch Vehicle
-
Tools & Platforms6 days ago
Winning with AI – A Playbook for Pest Control Business Leaders to Drive Growth
-
Jobs & Careers6 days ago
Telangana Launches TGDeX—India’s First State‑Led AI Public Infrastructure