Connect with us

AI Research

Researchers train AI to diagnose heart failure in rural patients using low-tech electrocardiograms

Published

on


WVU computer scientists are training AI models to diagnose heart failure using data generated by low-tech equipment widely available in rural Appalachian medical practices. Credit: WVU/Micaela Morrissette

Concerned about the ability of artificial intelligence models trained on data from urban demographics to make the right medical diagnoses for rural populations, West Virginia University computer scientists have developed several AI models that can identify signs of heart failure in patients from Appalachia.

Prashnna Gyawali, assistant professor in the Lane Department of Computer Science and Electrical Engineering at the WVU Benjamin M. Statler College of Engineering and Mineral Resources, said —a chronic, persistent condition in which the heart cannot pump enough blood to meet the body’s need for oxygen—is one of the most pressing national and global health issues, and one that hits rural regions of the U.S. especially hard.

Despite the outsized impact of heart failure on rural populations, AI models are currently being trained to diagnose the disease using data representing patients from urban and suburban areas like Stanford, California, Gyawali said.

“Imagine Jane Doe, a 62-year-old woman living in a rural Appalachian community,” he suggested. “She has limited access to specialty care, relies on a small local clinic, and her lifestyle, diet and health history reflect the realities of her environment: high physical labor, minimal preventive care, and increased exposure to environmental risk factors like coal dust or poor air quality. Jane begins to experience fatigue and shortness of breath—symptoms that could point to heart failure.

“An AI system, trained primarily on data from urban hospitals in more affluent, coastal areas, evaluates Jane’s lab results. But because the system was not trained on patients who share Jane’s socioeconomic and environmental context, it fails to recognize her condition as urgent or abnormal,” Gyawali said. “This is why this work matters. By training AI models on data from West Virginia patients, we aim to ensure people like Jane receive accurate diagnoses, no matter where they live or how their lives differ from national averages.”

The researchers identified the AI models that were most accurate at diagnosing heart failure in an anonymized sample of more than 55,000 patients who received medical care in West Virginia. They also pinpointed the exact parameters for providing the AI models with data that most enhanced diagnostic accuracy. The findings appear in Scientific Reports, a Nature portfolio journal.

Doctoral student Alina Devkota emphasized they trained the AI models to work from patients’ electrocardiogram results, rather than the echocardiogram readings typical for patient data from urban areas.

Electrocardiograms rely on round electrodes stuck to the patient’s torso to record electrical signals from the heart. According to Devkota, they don’t require specialized equipment or specialized training to operate, but they still provide valuable insights into heart function.

“One of the criteria to diagnose heart failure is by measuring the ‘ejection fraction,’ or how much blood is pumped out of the heart with every beat, and the gold standard for doing that is with echocardiography, which uses to create images of the heart and the blood flowing through its valves,” she said.

“But echocardiography is expensive, time-consuming and often unavailable to patients in the very same rural Appalachian states that have the highest prevalence of heart failure across the nation. West Virginia, for example, ranks first in the U.S. for the prevalence of heart attack and , but many West Virginians don’t have local access to high-tech echocardiograms. They do have access to inexpensive electrocardiograms, so we tested whether AI models could use electrocardiogram readings to predict a patient’s ejection fraction.”

Devkota, Gyawali and their colleagues trained several AI models on patient records from 28 hospitals across West Virginia. The AI models used either “deep learning,” which relies on multilayered neural networks, or “non-deep learning,” which relies on simpler algorithms, to analyze the patient records and draw conclusions.

The researchers found the models, particularly one called ResNet, did best at correctly predicting a patient’s ejection fraction based on data from 12-lead electrocardiograms, with the results suggesting that a larger dataset for training would yield even better results. They also found that providing the AI models with specific “leads,” or combinations of data from different electrode pairs, affected how accurate the models’ ejection fraction predictions were.

Gyawali said while AI models are not yet being used in due to reliability concerns, training an AI to successfully estimate from electrocardiogram signals could soon give clinicians an edge in protecting patients’ cardiac health.

“Heart failure affects more than six million Americans today, and factors like our aging population mean the risk is growing rapidly—approximately 1 in 4 people alive today will experience heart failure during their lifetimes. The prevalence is even higher in rural Appalachia, so it’s critical the people here do not continue to be overlooked.”

Additional WVU contributors to the research included Rukesh Prajapati, graduate research assistant; Amr El-Wakeel, assistant professor; Donald Adjeroh, professor and chair for computer science; and Brijesh Patel, assistant professor in the WVU Health Sciences School of Medicine.

More information:
AI analysis for ejection fraction estimation from 12-lead ECG, Scientific Reports (2025). DOI: 10.1038/s41598-025-97113-0scientific

Citation:
Researchers train AI to diagnose heart failure in rural patients using low-tech electrocardiograms (2025, August 31)
retrieved 31 August 2025
from https://medicalxpress.com/news/2025-08-ai-heart-failure-rural-patients.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.





Source link

AI Research

School Cheating: Research Shows AI Has Not Increased Its Scale

Published

on


Changes in Learning: Cheating and Artificial Intelligence

When reading the news, one gets the impression that all students use artificial intelligence to cheat in their studies. Headlines in newspapers such as The Wall Street Journal or the New York Times often mention ‘cheating’ and ‘AI’. Many stories, similar to a publication in New York Magazine, describe students who openly testify about using generative AI to complete assignments.

With the rise of such headlines, it seems that education is under threat: traditional exams, readings, and essays are filled with cheating through AI. In the worst cases, students use tools like ChatGPT to write complete works.

This seems frustrating, but such a thought is only part of the story.

Cheating has always existed. As an educational researcher studying cheating with AI, I can assert that preliminary data indicate that AI has changed the methods of cheating, but not its volumes.

Our early data suggest that AI has changed the method, but not necessarily the scale of cheating that was already taking place.

This does not mean that cheating using AI is not a serious problem. Important questions are raised: Will cheating increase in the future due to AI? Is the use of AI in education cheating? How should parents and schools respond to prepare children for a life that is significantly different from our experience?

The Pervasiveness of Cheating

Cheating has existed for a very long Time — probably since the creation of educational institutions. In the 1990s and 2000s, Don McCabe, a business school professor at Rutgers University, recorded high levels of cheating among students. One of his studies showed that up to 96% of business students admitted to engaging in ‘cheating behavior’.

McCabe used anonymous surveys where students had to indicate how often they engaged in cheating. This allowed for high cheating rates, which varied from 61.3% to 82.7% before the pandemic.

Cheating in the AI Era

Has cheating using AI increased? Analyzing data from over 1900 students from three schools before and after the introduction of ChatGPT, we found no significant changes in cheating behavior. In particular, 11% of students used AI to write their papers.

Our diligent work showed that AI is becoming a popular tool for cheating, but many questions remain to be explored. For example, in 2024 and 2025, we studied the behavior of another 28000-39000 students, where 15% admitted to using AI to create their work.

Challenges of Using AI

Students are accustomed to using AI but understand that there are boundaries between acceptable and unacceptable use. Reports indicate that many use AI to avoid doing homework or to gain ideas for creative work.

Students feel that their teachers use AI, and many consider it unfair when they are punished for using AI in education.

What Will AI Use Mean for Schools?

The modern education system was not designed with generative AI in mind. Traditionally, educational tasks are seen as the result of intensive work, but now this work is increasingly blurred.

It is important to understand what the main reasons for cheating are, how it relates to stress, time management, and the curriculum. Protecting students from cheating is important, but ways of teaching and the use of AI in classrooms also need to be rethought.

Four Future Questions

AI has not caused cheating in educational institutions but has only opened new possibilities. Here are questions worth considering:

  • Why do students resort to cheating? The stress of studying may lead them to seek easier solutions.
  • Do teachers adhere to their rules? Hypocrisy in demands on students can shape false perceptions of AI use in education.
  • Are the rules concerning AI clearly stated? Determining the acceptability of AI use in education may be vague.
  • What is important for students to know in a future rich in AI? Educational methods must be timely adapted to the new reality.

The future of education in the age of AI requires an open dialogue between teachers and students. This will allow for the development of new skills and knowledge necessary for successful learning.



Source link

Continue Reading

AI Research

Artificial intelligence helps break barriers for Hispanic homeownership | National News

Published

on


























Artificial intelligence helps break barriers for Hispanic homeownership | National News | ottumwacourier.com

We recognize you are attempting to access this website from a country belonging to the European Economic Area (EEA) including the EU which
enforces the General Data Protection Regulation (GDPR) and therefore access cannot be granted at this time.

For any issues, call (641) 684-4611.



Source link

Continue Reading

AI Research

Artificial intelligence helps break barriers for Hispanic homeownership – Temple Daily Telegram

Published

on



Artificial intelligence helps break barriers for Hispanic homeownership  Temple Daily Telegram



Source link

Continue Reading

Trending