Books, Courses & Certifications
Embracing AI at Microsoft with New AI Certifications
This story reflects updated guidance from Microsoft Digital—it was first published in 2023.
As the company’s IT organization, we at Microsoft Digital realized that advanced AI was going to create opportunities for our employees to increase their reach and impact. We knew we needed to move quickly to help them get ready for the moment.
Our response?
We assembled an ambitious data and AI curriculum through Microsoft Viva Learning that draws from Microsoft Learn and other content sources. This curriculum is now empowering our employees with the skills they need to harness these tools.
Microsoft Viva Learning and Microsoft Learn
Microsoft Viva Learning and Microsoft Learn are two distinct platforms that serve different purposes.
Microsoft Viva Learning is a centralized learning hub in Microsoft Teams that lets you seamlessly integrate learning and building skills into your day. With Viva Learning your team can discover, share, recommend, and learn from content libraries provided by both your organization and select partners. They can do all of this without leaving Microsoft Teams.
Microsoft Learn is a free online learning platform that provides interactive learning content for Microsoft products and services. It offers a wide range of courses, tutorials, and certifications to help users learn new skills and advance their careers. Microsoft Learn is accessible to anyone with an internet connection and is available in multiple languages.
It’s all part of our approach to infusing AI into everything we do to support the company. The more successful we are in Microsoft Digital, the better our team can deploy our new AI technologies to the rest of our colleagues across the organization.
Infusing AI into Microsoft through a learn-it-all culture
Fully unleashing AI across Microsoft is a bold aspiration that will require plenty of guidance and support from our Microsoft Digital team. It’s both a technology and a people challenge that requires us to have more than IT knowledge to deliver.
“We take a holistic approach,” says Sean MacDonald, partner director of product management in Microsoft Digital. “It’s not just about winning with technology—it’s about supporting the community and doing things the right way.”
With our learn-it-all culture and Microsoft Viva Learning, Microsoft Learn, and other content sources at our disposal, a progressive curriculum was the natural choice for upskilling our technical professionals. Microsoft Viva Learning connects content from our organization’s internal learning libraries and third-party learning management systems. As a result, it makes it easy for our team to develop learning paths with content from Microsoft Learn, LinkedIn Learning, and external providers like Pearson.
“As a tech company, we’re always encountering new concepts and new technologies,” says Miguel Uribe, principal product manager lead for Employee Experience Insights in Microsoft Digital. “It’s part of our culture to absorb technology and consume concepts very quickly, and AI is just the latest example.”
Building meaningful AI certifications for Microsoft employees
Our AI Center of Excellence (AI CoE)—the Microsoft Digital team tasked with designing and championing how our organization uses AI—is at the forefront of these efforts. They’re working to standardize how we leverage AI internally.
{Read our story on our CoE here: The AI revolution: How Microsoft Digital is responding with an AI Center of Excellence.}
The AI CoE operates according to the principles of AI 4 ALL: Accelerate, learn, and land.
Strategy
Work with product and feature teams to determine what we want to achieve with AI, define business goals, and prioritize the most important implementations and investments.
Architecture
Enable infrastructure, data, services, security, privacy, scalability, accessibility, and interoperability for all AI use cases.
Roadmap
Build and manage implementation plans for AI projects, including tools, technologies, responsibilities, targets, and performance measurement.
Culture
Foster collaboration, innovation, education, and responsible AI among stakeholders.
Responsible AI
Responsible AI serves as the foundation for all our AI-powered solutions and products. The AI CoE prioritizes the company’s responsible AI principles for our AI projects: fairness, reliability and safety, privacy and security, inclusion, transparency, and accountability.
“Our first priority is creating a common understanding and language around these fairly new topics,” says Humberto Arias, senior product manager in Microsoft Digital. “The technology changes constantly, so you need to learn continually to keep up.”
Fortunately, enterprising employees within Microsoft have been laying the groundwork for this moment for years. Our Artificial Intelligence and Machine Learning (AI/ML) community had been working on their own time to deepen their knowledge through research and independent certifications.
When generative AI took off at the start of 2023, that community began partnering with the AI CoE and got serious about empowerment. They brought their knowledge. The AI CoE brought their organizational leadership.
“No other organization within Microsoft can provide such a clear picture of what you need for upskilling,” says Urvi Sengar, an AI/ML senior software engineer in Microsoft Digital. “Only our IT organization is functionally diverse enough.”
Their work is a testament to the power of trusting your technology champions to lead change. In previous years, Sengar and her AI/ML community colleagues had already built a learning path focused on Azure AI Fundamentals. They relaunched the course in 2023 to represent the core of our AI certifications.
From there, a diverse group of technical and employee experience professionals collaborated to assemble, create, and structure a series of learning paths to launch our Microsoft Digital employees into the next level of AI expertise. That’s where Microsoft Viva Learning really shines. The platform makes it easy to curate our AI content actively as the technology landscape evolves.
“So much is changing that we don’t want to stop at just one static certification,” Sengar says. “We want to keep the learning going, along with everything new and relevant, so we can take this community forward.”
The result is a granular, multidisciplinary curriculum that gets Microsoft Digital employees leveled up not just to AI literacy, but to AI proficiency.
Innovative AI certifications designed for employee success
Our AI and Data Learning curriculum divides into three distinct learning paths: basic, intermediate, and advanced.
- AI Learning Basic gives beginners a ground-level, conceptual understanding of the technology. It builds familiarity with generative AI and no-code AI tools, as well as more theoretical frameworks and topics like the responsible AI principles, AI ethics, and how to align AI projects with our values.
- AI Learning Intermediate is where things get more functional. Here, employees learn about natural language processing and prompt engineering, as well as several specific AI tools, including ChatGPT, AI Builder in Power Automate, Semantic Kernel (for building AI-based apps), Azure OpenAI generative models, and more.
- AI Learning Advanced goes from function to innovation. This is where employees can dive deeper into working with large language models (LLMs), training neural networks, self-supervised machine learning, and other skills that will help them develop more advanced solutions and automations. Examples include units on Advanced Natural Language Processing with Python and UX for AI.
When employees complete each learning path, they receive a sharable badge. We used Credly, a digital credentialing solution created by Pearson, to design and manage those badges. We can then distribute them to our employees through Credly’s integration with Microsoft Viva Learning.
Microsoft Digital AI certification levels
Curating the curriculum is only one part of the AI CoE’s job. It’s also crucial to promote and socialize these learning opportunities internally. The wider Microsoft Viva employee experience suite takes care of that.
We actively socialize the AI certifications through Microsoft Viva Engage, our employee communication platform, but top-down promotion is only one component of their success. Microsoft Digital employees often share their certifications via LinkedIn or through Viva Engage. As a result, there’s an element of virality that leads even more of our employees to take these courses—even outside Microsoft Digital.
Our teams are clearly excited about their success. The share rate for AI Learning badges is 67 percent, well above Credly’s average of 47 percent.
Beyond Microsoft Digital, lines of business across Microsoft are adapting these certifications for their own needs.
“People are observing the work we do and looking for ways to bring it into their organizations,” says Nitul Pancholi, principal product manager in Microsoft Digital, who leads the AI CoE’s culture pillar. “Even external customers are asking how they can set up their own centers of excellence and what to prioritize.”
Freshly empowered AI practitioners, ready for the future
We’re still at the beginning of our internal AI adoption journey. But by raising the baseline of AI knowledge, these certifications ensure our technical professionals are ready to lead the rest of our organization.
“That’s one of the super cool things about Microsoft,” MacDonald says. “We have the playground at our fingertips, and we have the autonomy and opportunity to dream up whatever we want.”
The advent of advanced AI supported by thoughtful empowerment initiatives will only amplify our employees’ ability to experiment with emerging technologies. We’re confident that developing our own AI curriculum will help us work our way into a virtuous cycle of more learning, more creativity, and more business innovation.
Customers with access to Microsoft Viva Learning can start assembling their own AI curriculum from Microsoft Learn content, their own educational materials, and external providers and learning management systems. By unlocking AI for employees through education, organizations will be positioned to ride the wave of the next digital revolution.
Here are some things to consider as you think about launching an AI curriculum at your company:
- Leverage your integrations with tools like Microsoft Viva Learning and LinkedIn Learning.
- Actively curate your courses to keep your curriculum up to date.
- Busy schedules get in the way: Build time for learning into your employees’ days, then support them with curriculum.
- Leverage executive sponsorship, employee champions, and the social aspects of learning.
- Incentivize and recognize progress through gamification, friendly competition, badges, and testimonials.
- Build a diverse enablement team from across different disciplines, seniorities, and technical backgrounds.
- Think about how to segment learners by level of expertise and learning style, then tailor the learning to those segments.
Books, Courses & Certifications
Complete Guide with Curriculum & Fees
The year 2025 for AI education provides choices catering to learning style, career goal, and budget. The Logicmojo Advanced Data Science & AI Program has emerged as the top one, offering comprehensive training with proven results in placement for those wishing to pursue job-oriented training. It offers the kind of live training, projects, and career support that fellow professionals seek when interested in turning into a high-paying AI position.
On the other hand, for the independent learner seeking prestige credentials, a few other good options might include programs from Stanford, MIT, and DeepLearning.AI. Google and IBM certificates are an inexpensive footing for a beginner, while, at the opposite end of the spectrum, a Carnegie Mellon certificate is considered the ultimate academic credential in AI.
Whatever choice you make in 2025 to further your knowledge in AI will place you at the forefront of technology innovation. AI, expected to generate millions of jobs, has the potential to revolutionize every industry, and so whatever you learn today will be the deciding factor in your career waters for at least the next few decades.
Books, Courses & Certifications
Artificial Intelligence and Machine Learning Bootcamp Powered by Simplilearn
Artificial Intelligence and Machine Learning are noteworthy game-changers in today’s digital world. Technological wonders once limited to science fiction have become science fact, giving us innovations such as self-driving cars, intelligent voice-operated virtual assistants, and computers that learn and grow.
The two fields are making inroads into all areas of our lives, including the workplace, showing up in occupations such as Data Scientist and Digital Marketer. And for all the impressive things that Artificial Intelligence and Machine Learning have accomplished in the last ten years, there’s so much more in store.
Simplilearn wants today’s IT professionals to be better equipped to embrace these new technologies. Hence, it offers Machine Learning Bootcamp, held in conjunction with Caltech’s Center for Technology and Management Education (CTME) and in collaboration with IBM.
The bootcamp covers the relevant points of Artificial Intelligence and Machine Learning, exploring tools and concepts such as Python and TensorFlow. The course optimizes the academic excellence of Caltech and the industry prowess of IBM, creating an unbeatable learning resource that supercharges your skillset and prepares you to navigate the world of AI/ML better.
Why is This a Great Bootcamp?
When you bring together an impressive lineup of Simplilearn, Caltech, and IBM, you expect nothing less than an excellent result. The AI and Machine Learning Bootcamp delivers as promised.
This six-month program deals with vital AI/ML concepts such as Deep Learning, Statistics, and Data Science With Python. Here is a breakdown of the diverse and valuable information the bootcamp offers:
- Orientation. The orientation session prepares you for the rigors of an intense, six-month learning experience, where you dedicate from five to ten hours a week to learning the latest in AI/ML skills and concepts.
- Introduction to Artificial Intelligence. There’s a difference between AI and ML, and here’s where you start to learn this. This offering is a beginner course covering the basics of AI and workflows, Deep Learning, Machine Learning, and other details.
- Python for Data Science. Many data scientists prefer to use the Python programming language when working with AI/ML. This section deals with Python, its libraries, and using a Jupyter-based lab environment to write scripts.
- Applied Data Science with Python. Your exposure to Python continues with this study of Python’s tools and techniques used for Data Analytics.
- Machine Learning. Now we come to the other half of the AI/ML partnership. You will learn all about Machine Learning’s chief techniques and concepts, including heuristic aspects, supervised/unsupervised learning, and developing algorithms.
- Deep Learning with Keras and Tensorflow. This section shows you how to use Keras and TensorFlow frameworks to master Deep Learning models and concepts and prepare Deep Learning algorithms.
- Advanced Deep Learning and Computer Vision. This advanced course takes Deep Learning to a new level. This module covers topics like Computer Vision for OCR and Object Detection, and Computer Vision Basics with Python.
- Capstone project. Finally, it’s time to take what you have learned and implement your new AI/ML skills to solve an industry-relevant issue.
The course also offers students a series of electives:
- Statistics Essentials for Data Science. Statistics are a vital part of Data Science, and this elective teaches you how to make data-driven predictions via statistical inference.
- NLP and Speech Recognition. This elective covers speech-to-text conversion, text-to-speech conversion, automated speech recognition, voice-assistance devices, and much more.
- Reinforcement Learning. Learn how to solve reinforcement learning problems by applying different algorithms and strategies like TensorFlow and Python.
- Caltech Artificial Intelligence and Machine Learning Bootcamp Masterclass. These masterclasses are conducted by qualified Caltech and IBM instructors.
This AI and ML Bootcamp gives students a bounty of AI/ML-related benefits like:
- Campus immersion, which includes an exclusive visit to Caltech’s robotics lab.
- A program completion certificate from Caltech CTME.
- A Caltech CTME Circle membership.
- The chance to earn up to 22 CEUs courtesy of Caltech CTME.
- An online convocation by the Caltech CTME Program Director.
- A physical certificate from Caltech CTME if you request one.
- Access to hackathons and Ask Me Anything sessions from IBM.
- More than 25 hands-on projects and integrated labs across industry verticals.
- A Level Up session by Andrew McAfee, Principal Research Scientist at MIT.
- Access to Simplilearn’s Career Service, which will help you get noticed by today’s top hiring companies.
- Industry-certified certificates for IBM courses.
- Industry masterclasses delivered by IBM.
- Hackathons from IBM.
- Ask Me Anything (AMA) sessions held with the IBM leadership.
And these are the skills the course covers, all essential tools for working with today’s AI and ML projects:
- Statistics
- Python
- Supervised Learning
- Unsupervised Learning
- Recommendation Systems
- NLP
- Neural Networks
- GANs
- Deep Learning
- Reinforcement Learning
- Speech Recognition
- Ensemble Learning
- Computer Vision
About Caltech CTME
Located in California, Caltech is a world-famous, highly respected science and engineering institution featuring some of today’s brightest scientific and technological minds. Contributions from Caltech alumni have earned worldwide acclaim, including over three dozen Nobel prizes. Caltech CTME instructors offer this quality of learning to our students by holding bootcamp master classes.
About IBM
IBM was founded in 1911 and has earned a reputation as the top IT industry leader and master of IT innovation.
How to Thrive in the Brave New World of AI and ML
Machine Learning and Artificial Intelligence have enormous potential to change our world for the better, but the fields need people of skill and vision to help lead the way. Somehow, there must be a balance between technological advancement and how it impacts people (quality of life, carbon footprint, job losses due to automation, etc.).
The AI and Machine Learning Bootcamp helps teach and train students, equipping them to assume a role of leadership in the new world that AI and ML offer.
Books, Courses & Certifications
Teaching Developers to Think with AI – O’Reilly
Developers are doing incredible things with AI. Tools like Copilot, ChatGPT, and Claude have rapidly become indispensable for developers, offering unprecedented speed and efficiency in tasks like writing code, debugging tricky behavior, generating tests, and exploring unfamiliar libraries and frameworks. When it works, it’s effective, and it feels incredibly satisfying.
But if you’ve spent any real time coding with AI, you’ve probably hit a point where things stall. You keep refining your prompt and adjusting your approach, but the model keeps generating the same kind of answer, just phrased a little differently each time, and returning slight variations on the same incomplete solution. It feels close, but it’s not getting there. And worse, it’s not clear how to get back on track.
That moment is familiar to a lot of people trying to apply AI in real work. It’s what my recent talk at O’Reilly’s AI Codecon event was all about.
Over the last two years, while working on the latest edition of Head First C#, I’ve been developing a new kind of learning path, one that helps developers get better at both coding and using AI. I call it Sens-AI, and it came out of something I kept seeing:
There’s a learning gap with AI that’s creating real challenges for people who are still building their development skills.
My recent O’Reilly Radar article “Bridging the AI Learning Gap” looked at what happens when developers try to learn AI and coding at the same time. It’s not just a tooling problem—it’s a thinking problem. A lot of developers are figuring things out by trial and error, and it became clear to me that they needed a better way to move from improvising to actually solving problems.
From Vibe Coding to Problem Solving
Ask developers how they use AI, and many will describe a kind of improvisational prompting strategy: Give the model a task, see what it returns, and nudge it toward something better. It can be an effective approach because it’s fast, fluid, and almost effortless when it works.
That pattern is common enough to have a name: vibe coding. It’s a great starting point, and it works because it draws on real prompt engineering fundamentals—iterating, reacting to output, and refining based on feedback. But when something breaks, the code doesn’t behave as expected, or the AI keeps rehashing the same unhelpful answers, it’s not always clear what to try next. That’s when vibe coding starts to fall apart.
Senior developers tend to pick up AI more quickly than junior ones, but that’s not a hard-and-fast rule. I’ve seen brand-new developers pick it up quickly, and I’ve seen experienced ones get stuck. The difference is in what they do next. The people who succeed with AI tend to stop and rethink: They figure out what’s going wrong, step back to look at the problem, and reframe their prompt to give the model something better to work with.
The Sens-AI Framework
As I started working more closely with developers who were using AI tools to try to find ways to help them ramp up more easily, I paid attention to where they were getting stuck, and I started noticing that the pattern of an AI rehashing the same “almost there” suggestions kept coming up in training sessions and real projects. I saw it happen in my own work too. At first it felt like a weird quirk in the model’s behavior, but over time I realized it was a signal: The AI had used up the context I’d given it. The signal tells us that we need a better understanding of the problem, so we can give the model the information it’s missing. That realization was a turning point. Once I started paying attention to those breakdown moments, I began to see the same root cause across many developers’ experiences: not a flaw in the tools but a lack of framing, context, or understanding that the AI couldn’t supply on its own.
Over time—and after a lot of testing, iteration, and feedback from developers—I distilled the core of the Sens-AI learning path into five specific habits. They came directly from watching where learners got stuck, what kinds of questions they asked, and what helped them move forward. These habits form a framework that’s the intellectual foundation behind how Head First C# teaches developers to work with AI:
- Context: Paying attention to what information you supply to the model, trying to figure out what else it needs to know, and supplying it clearly. This includes code, comments, structure, intent, and anything else that helps the model understand what you’re trying to do.
- Research: Actively using AI and external sources to deepen your own understanding of the problem. This means running examples, consulting documentation, and checking references to verify what’s really going on.
- Problem framing: Using the information you’ve gathered to define the problem more clearly so the model can respond more usefully. This involves digging deeper into the problem you’re trying to solve, recognizing what the AI still needs to know about it, and shaping your prompt to steer it in a more productive direction—and going back to do more research when you realize that it needs more context.
- Refining: Iterating your prompts deliberately. This isn’t about random tweaks; it’s about making targeted changes based on what the model got right and what it missed, and using those results to guide the next step.
- Critical thinking: Judging the quality of AI output rather than just simply accepting it. Does the suggestion make sense? Is it correct, relevant, plausible? This habit is especially important because it helps developers avoid the trap of trusting confident-sounding answers that don’t actually work.
These habits let developers get more out of AI while keeping control over the direction of their work.
From Stuck to Solved: Getting Better Results from AI
I’ve watched a lot of developers use tools like Copilot and ChatGPT—during training sessions, in hands-on exercises, and when they’ve asked me directly for help. What stood out to me was how often they assumed the AI had done a bad job. In reality, the prompt just didn’t include the information the model needed to solve the problem. No one had shown them how to supply the right context. That’s what the five Sens-AI habits are designed to address: not by handing developers a checklist but by helping them build a mental model for how to work with AI more effectively.
In my AI Codecon talk, I shared a story about my colleague Luis, a very experienced developer with over three decades of coding experience. He’s a seasoned engineer and an advanced AI user who builds content for training other developers, works with large language models directly, uses sophisticated prompting techniques, and has built AI-based analysis tools.
Luis was building a desktop wrapper for a React app using Tauri, a Rust-based toolkit. He pulled in both Copilot and ChatGPT, cross-checking output, exploring alternatives, and trying different approaches. But the code still wasn’t working.
Each AI suggestion seemed to fix part of the problem but break another part. The model kept offering slightly different versions of the same incomplete solution, never quite resolving the issue. For a while, he vibe-coded through it, adjusting the prompt and trying again to see if a small nudge would help, but the answers kept circling the same spot. Eventually, he realized the AI had run out of context and changed his approach. He stepped back, did some focused research to better understand what the AI was trying (and failing) to do, and applied the same habits I emphasize in the Sens-AI framework.
That shift changed the outcome. Once he understood the pattern the AI was trying to use, he could guide it. He reframed his prompt, added more context, and finally started getting suggestions that worked. The suggestions only started working once Luis gave the model the missing pieces it needed to make sense of the problem.
Applying the Sens-AI Framework: A Real-World Example
Before I developed the Sens-AI framework, I ran into a problem that later became a textbook case for it. I was curious whether COBOL, a decades-old language developed for mainframes that I had never used before but wanted to learn more about, could handle the basic mechanics of an interactive game. So I did some experimental vibe coding to build a simple terminal app that would let the user move an asterisk around the screen using the W/A/S/D keys. It was a weird little side project—I just wanted to see if I could make COBOL do something it was never really meant for, and learn something about it along the way.
The initial AI-generated code compiled and ran just fine, and at first I made some progress. I was able to get it to clear the screen, draw the asterisk in the right place, handle raw keyboard input that didn’t require the user to press Enter, and get past some initial bugs that caused a lot of flickering.
But once I hit a more subtle bug—where ANSI escape codes like ";10H"
were printing literally instead of controlling the cursor—ChatGPT got stuck. I’d describe the problem, and it would generate a slightly different version of the same answer each time. One suggestion used different variable names. Another changed the order of operations. A few attempted to reformat the STRING
statement. But none of them addressed the root cause.
The pattern was always the same: slight code rewrites that looked plausible but didn’t actually change the behavior. That’s what a rehash loop looks like. The AI wasn’t giving me worse answers—it was just circling, stuck on the same conceptual idea. So I did what many developers do: I assumed the AI just couldn’t answer my question and moved on to another problem.
At the time, I didn’t recognize the rehash loop for what it was. I assumed ChatGPT just didn’t know the answer and gave up. But revisiting the project after developing the Sens-AI framework, I saw the whole exchange in a new light. The rehash loop was a signal that the AI needed more context. It got stuck because I hadn’t told it what it needed to know.
When I started working on the framework, I remembered this old failure and thought it’d be a perfect test case. Now I had a set of steps that I could follow:
- First, I recognized that the AI had run out of context. The model wasn’t failing randomly—it was repeating itself because it didn’t understand what I was asking it to do.
- Next, I did some targeted research. I brushed up on ANSI escape codes and started reading the AI’s earlier explanations more carefully. That’s when I noticed a detail I’d skimmed past the first time while vibe coding: When I went back through the AI explanation of the code that it generated, I saw that the
PIC ZZ
COBOL syntax defines a numeric-edited field. I suspected that could potentially cause it to introduce leading spaces into strings and wondered if that could break an escape sequence. - Then I reframed the problem. I opened a new chat and explained what I was trying to build, what I was seeing, and what I suspected. I told the AI I’d noticed it was circling the same solution and treated that as a signal that we were missing something fundamental. I also told it that I’d done some research and had three leads I suspected were related: how COBOL displays multiple items in sequence, how terminal escape codes need to be formatted, and how spacing in numeric fields might be corrupting the output. The prompt didn’t provide answers; it just gave some potential research areas for the AI to investigate. That gave it what it needed to find the additional context it needed to break out of the rehash loop.
- Once the model was unstuck, I refined my prompt. I asked follow-up questions to clarify exactly what the output should look like and how to construct the strings more reliably. I wasn’t just looking for a fix—I was guiding the model toward a better approach.
- And most of all, I used critical thinking. I read the answers closely, compared them to what I already knew, and decided what to try based on what actually made sense. The explanation checked out. I implemented the fix, and the program worked.
Once I took the time to understand the problem—and did just enough research to give the AI a few hints about what context it was missing—I was able to write a prompt that broke ChatGPT out of the rehash loop, and it generated code that did exactly what I needed. The generated code for the working COBOL app is available in this GitHub GIST.
Why These Habits Matter for New Developers
I built the Sens-AI learning path in Head First C# around the five habits in the framework. These habits aren’t checklists, scripts, or hard-and-fast rules. They’re ways of thinking that help people use AI more productively—and they don’t require years of experience. I’ve seen new developers pick them up quickly, sometimes faster than seasoned developers who didn’t realize they were stuck in shallow prompting loops.
The key insight into these habits came to me when I was updating the coding exercises in the most recent edition of Head First C#. I test the exercises using AI by pasting the instructions and starter code into tools like ChatGPT and Copilot. If they produce the correct solution, that means I’ve given the model enough information to solve it—which means I’ve given readers enough information too. But if it fails to solve the problem, something’s missing from the exercise instructions.
The process of using AI to test the exercises in the book reminded me of a problem I ran into in the first edition, back in 2007. One exercise kept tripping people up, and after reading a lot of feedback, I realized the problem: I hadn’t given readers all the information they needed to solve it. That helped connect the dots for me. The AI struggles with some coding problems for the same reason the learners were struggling with that exercise—because the context wasn’t there. Writing a good coding exercise and writing a good prompt both depend on understanding what the other side needs to make sense of the problem.
That experience helped me realize that to make developers successful with AI, we need to do more than just teach the basics of prompt engineering. We need to explicitly instill these thinking habits and give developers a way to build them alongside their core coding skills. If we want developers to succeed, we can’t just tell them to “prompt better.” We need to show them how to think with AI.
Where We Go from Here
If AI really is changing how we write software—and I believe it is—then we need to change how we teach it. We’ve made it easy to give people access to the tools. The harder part is helping them develop the habits and judgment to use them well, especially when things go wrong. That’s not just an education problem; it’s also a design problem, a documentation problem, and a tooling problem. Sens-AI is one answer, but it’s just the beginning. We still need clearer examples and better ways to guide, debug, and refine the model’s output. If we teach developers how to think with AI, we can help them become not just code generators but thoughtful engineers who understand what their code is doing and why it matters.
-
Funding & Business7 days ago
Kayak and Expedia race to build AI travel agents that turn social posts into itineraries
-
Jobs & Careers6 days ago
Mumbai-based Perplexity Alternative Has 60k+ Users Without Funding
-
Mergers & Acquisitions6 days ago
Donald Trump suggests US government review subsidies to Elon Musk’s companies
-
Funding & Business6 days ago
Rethinking Venture Capital’s Talent Pipeline
-
Jobs & Careers6 days ago
Why Agentic AI Isn’t Pure Hype (And What Skeptics Aren’t Seeing Yet)
-
Funding & Business4 days ago
Sakana AI’s TreeQuest: Deploy multi-model teams that outperform individual LLMs by 30%
-
Funding & Business7 days ago
From chatbots to collaborators: How AI agents are reshaping enterprise work
-
Jobs & Careers6 days ago
Astrophel Aerospace Raises ₹6.84 Crore to Build Reusable Launch Vehicle
-
Jobs & Careers4 days ago
Ilya Sutskever Takes Over as CEO of Safe Superintelligence After Daniel Gross’s Exit
-
Funding & Business6 days ago
Europe’s Most Ambitious Startups Aren’t Becoming Global; They’re Starting That Way