AI Research
CESHS’s Tingting Li awarded fellowship for AI and science ed research | WSU Insider
Tingting Li, an assistant professor of science education at WSU’s College of Education, Sport, and Human Sciences (CESHS), has been awarded a Spencer Postdoctoral Fellowship, one of only 25 given out nationwide this year.
The $70,000 fellowship, run by the National Academy of Education and funded by the Spencer Foundation, supports early-career researchers whose work has the potential to improve education in meaningful ways.
Li’s research focuses on how artificial intelligence (AI) can be used to help, not replace, classroom teachers.
Instead of treating AI as something that acts on its own, she sees it almost like a parter — one that needs to be carefully shaped by the knowledge, culture, and experiences found in real classrooms.
Her goal isn’t to blindly embrace new technology or reject it outright. Instead, she’s taking a middle path, pushing back against one-size-fits-all tech solutions and working to create tools that reflect the needs of diverse students and teachers. She focuses on making sure these tools are culturally relevant, language-friendly, and adaptable to different classroom settings.
We’re not building a tool to do the teacher’s job. We’re building a tool with teachers — something that learns from their input and augments their expertise.
Tingting Li, assistant professor of science education
Washington State University
Li said this is especially true when it comes to designing accessible science assessments that are fair, engaging, and aligned with national standards.
“There’s been a lot of buzz about generative AI lately,” Li said. “But in science education, we’re still facing some big challenges — like creating assessments that meet the Next Generation Science Standards and work well in diverse, real-world classrooms.”
Li’s project uses a large language model-based AI system that works alongside teachers to help them build better assessments. Unlike many tools that just focus on science content, this one also takes into account the classroom environment, student voices, and the language used to deliver lessons.
“We’re not building a tool to do the teacher’s job,” she said. “We’re building a tool with teachers — something that learns from their input and augments their expertise.”
CESHS dean Karen Thomas-Brown said Li’s work exemplifies the research mission and values.
“Dr. Li is an exceptional scholar dedicated to innovating in educational research and exploring the cutting-edge integration of technology, such as AI in K–12 and higher education,” she said.
The research will explore how teachers and students interact with the AI system, how their feedback shapes the tool, and how the process affects both teaching and learning.
Li hopes the work will lead to new ways of thinking about assessment — shifting from just testing what students know to using assessment as a tool for learning and growth.
“This fellowship is an incredible honor,” Li said. “It’s a chance to show that smart, practical tools can help teachers do their jobs better — not by replacing them, but by working alongside them in meaningful ways.”
AI Research
Radiomics-Based Artificial Intelligence and Machine Learning Approach for the Diagnosis and Prognosis of Idiopathic Pulmonary Fibrosis: A Systematic Review – Cureus
AI Research
A Real-Time Look at How AI Is Reshaping Work : Information Sciences Institute
Artificial intelligence may take over some tasks and transform others, but one thing is certain: it’s reshaping the job market. Researchers at USC’s Information Sciences Institute (ISI) analyzed LinkedIn job postings and AI-related patent filings to measure which jobs are most exposed, and where those changes are happening first.
The project was led by ISI research assistant Eun Cheol Choi, working with students in a graduate-level USC Annenberg data science course taught by USC Viterbi Research Assistant Professor Luca Luceri. The team developed an “AI exposure” score to measure how closely each role is tied to current AI technologies. A high score suggests the job may be affected by automation, new tools, or shifts in how the work is done.
Which Industries Are Most Exposed to AI?
To understand how exposure shifted with new waves of innovation, the researchers compared patent data from before and after a major turning point. “We split the patent dataset into two parts, pre- and post-ChatGPT release, to see how job exposure scores changed in relation to fresh innovations,” Choi said. Released in late 2022, ChatGPT triggered a surge in generative AI development, investment, and patent filings.
Jobs in wholesale trade, transportation and warehousing, information, and manufacturing topped the list in both periods. Retail also showed high exposure early on, while healthcare and social assistance rose sharply after ChatGPT, likely due to new AI tools aimed at diagnostics, medical records, and clinical decision-making.
In contrast, education and real estate consistently showed low exposure, suggesting they are, at least for now, less likely to be reshaped by current AI technologies.
AI’s Reach Depends on the Role
AI exposure doesn’t just vary by industry, it also depends on the specific type of work. Jobs like software engineer and data scientist scored highest, since they involve building or deploying AI systems. Roles in manufacturing and repair, such as maintenance technician, also showed elevated exposure due to increased use of AI in automation and diagnostics.
At the other end of the spectrum, jobs like tax accountant, HR coordinator, and paralegal showed low exposure. They center on work that’s harder for AI to automate: nuanced reasoning, domain expertise, or dealing with people.
AI Exposure and Salary Don’t Always Move Together
The study also examined how AI exposure relates to pay. In general, jobs with higher exposure to current AI technologies were associated with higher salaries, likely reflecting the demand for new AI skills. That trend was strongest in the information sector, where software and data-related roles were both highly exposed and well compensated.
But in sectors like wholesale trade and transportation and warehousing, the opposite was true. Jobs with higher exposure in these industries tended to offer lower salaries, especially at the highest exposure levels. The researchers suggest this may signal the early effects of automation, where AI is starting to replace workers instead of augmenting them.
“In some industries, there may be synergy between workers and AI,” said Choi. “In others, it may point to competition or replacement.”
From Class Project to Ongoing Research
The contrast between industries where AI complements workers and those where it may replace them is something the team plans to investigate further. They hope to build on their framework by distinguishing between different types of impact — automation versus augmentation — and by tracking the emergence of new job categories driven by AI. “This kind of framework is exciting,” said Choi, “because it lets us capture those signals in real time.”
Luceri emphasized the value of hands-on research in the classroom: “It’s important to give students the chance to work on relevant and impactful problems where they can apply the theoretical tools they’ve learned to real-world data and questions,” he said. The paper, Mapping Labor Market Vulnerability in the Age of AI: Evidence from Job Postings and Patent Data, was co-authored by students Qingyu Cao, Qi Guan, Shengzhu Peng, and Po-Yuan Chen, and was presented at the 2025 International AAAI Conference on Web and Social Media (ICWSM), held June 23-26 in Copenhagen, Denmark.
Published on July 7th, 2025
Last updated on July 7th, 2025
AI Research
SERAM collaborates on AI-driven clinical decision project
The Spanish Society of Medical Radiology (SERAM) has collaborated with six other scientific societies to develop an AI-supported urology clinical decision-making project called Uro-Oncogu(IA)s.
The initiative produced an algorithm that will “reduce time and clinical variability” in the management of urological patients, the society said. SERAM’s collaborators include the Spanish Urology Association (AEU), the Foundation for Research in Urology (FIU), the Spanish Society of Pathological Anatomy (SEAP), the Spanish Society of Hospital Pharmacy (SEFH), the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM), and the Spanish Society of Radiation Oncology (SEOR).
SERAM Secretary General Dr. MaríLuz Parra launched the project in Madrid on 3 July with AEU President Dr. Carmen González.
On behalf of SERAM, the following doctors participated in this initiative:
- Prostate cancer guide: Dr. Joan Carles Vilanova, PhD, of the University of Girona,
- Upper urinary tract guide: Dr. Richard Mast of University Hospital Vall d’Hebron in Barcelona,
- Muscle-invasive bladder cancer guide: Dr. Eloy Vivas of the University of Malaga,
- Non-muscle invasive bladder cancer guide: Dr. Paula Pelechano of the Valencian Institute of Oncology in Valencia,
- Kidney cancer guide: Dr. Nicolau Molina of the University of Barcelona.
-
Funding & Business7 days ago
Kayak and Expedia race to build AI travel agents that turn social posts into itineraries
-
Jobs & Careers7 days ago
Mumbai-based Perplexity Alternative Has 60k+ Users Without Funding
-
Mergers & Acquisitions7 days ago
Donald Trump suggests US government review subsidies to Elon Musk’s companies
-
Funding & Business6 days ago
Rethinking Venture Capital’s Talent Pipeline
-
Jobs & Careers6 days ago
Why Agentic AI Isn’t Pure Hype (And What Skeptics Aren’t Seeing Yet)
-
Funding & Business4 days ago
Sakana AI’s TreeQuest: Deploy multi-model teams that outperform individual LLMs by 30%
-
Jobs & Careers6 days ago
Astrophel Aerospace Raises ₹6.84 Crore to Build Reusable Launch Vehicle
-
Funding & Business1 week ago
From chatbots to collaborators: How AI agents are reshaping enterprise work
-
Tools & Platforms6 days ago
Winning with AI – A Playbook for Pest Control Business Leaders to Drive Growth
-
Jobs & Careers4 days ago
Ilya Sutskever Takes Over as CEO of Safe Superintelligence After Daniel Gross’s Exit