Connect with us

AI Insights

Let’s remember generative artificial intelligence (AI). As soon as you enter the command, the respon..

Published

on


Artist Oh Won, who is explaining the installation artwork “Mirror Mirror On The Wall”. Reporter Lee Seung-hwan

Let’s remember generative artificial intelligence (AI). As soon as you enter the command, the response arrives immediately. At this time, the gap between the question and the answer converges to virtually nothing. Because of the interaction close to simultaneity.

Installation artist Oh Won said, “In the history of human history using technology, all human questions have been embedded in intention, that is, attention. However, as it becomes ‘zero’ in the time it takes to get an answer after AI, the questioner criticizes that he is forgetting what his attention was.

I met artist Oh, who recently presented the installation art work “Mirror Mirror On The Wall: AI Between Attention And Intention” at 111CM, a complex cultural space in Suwon City, with this awareness of the problem.

“In the past, when people didn’t get an immediate answer, they had to remove countless clues they encountered on their way to the answer, so they needed accurate attention. That’s not the case anymore. This is because the sum of the paths has become too short, so you don’t have to wake up to intension. In this work, I wanted to think about us losing our attention.”

In artist Oh’s latest work, a mirror in the front stands out first. It was inspired by the mirror in Snow White. A long time ago, Snow White’s stepmother (Queen) told the mirror. “Mirror, mirror. “Who is the prettiest in the world?” According to the author, intension is hidden in the stepmother’s question to get the answer, “The Queen is the most beautiful.” The stepmother did not get the ‘answer’, so the ‘Snow White’ narrative began.

However, writer Oh criticizes that modern humans who use Generative AI do not even meet the level of questions asked by stepmothers. This is because of AI, which has to answer any question immediately. Is AI a hope to mankind.

“If you look at it broadly, I think it’s a world where there’s no attention at all, and it’s just a question that’s close to checking.” We humans have forgotten the intension that we have to make ourselves wriggle inside, and sometimes my intension is ignored by others or ignored by others.”

On the white wall opposite the mirror, you can see the screen of the search box he produced. Visitors can write questions here as if they were putting a prompt on a Generative AI. But the answer doesn’t come up even if you ask a question. ‘…Only the sentence ‘thinking’ blinks with the cursor.

“When you wait for the answer to come out, you forget what your initial attention was.” I wanted to ask you that very moment. Perhaps, isn’t the modern digital society a society that only demands attention from others where attention has disappeared? I wanted to ask back how AI gives meaning, how reality is formed.”

The stage name ‘Owon’ means the numbers 0 and 1, and ‘O’.It is marked as ‘One’. He has been paying keen attention to the way humans think in the complex world we live in, and has been working on installation art for more than a decade. Why were the numbers 0 and 1.

“I don’t think there’s anything between 0 and 1, but there’s actually an infinite number. I think human behavior is one of the small and powerless paradoxes that lie between them. I hope my works to the world will be remembered as one of those things.”

[Reporter Kim Yu-tae]



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

AI Insights

Apple's top executive in charge of artificial intelligence models, Ruoming Pang, is leaving for Meta – Bloomberg News – MarketScreener

Published

on



Apple’s top executive in charge of artificial intelligence models, Ruoming Pang, is leaving for Meta – Bloomberg News  MarketScreener



Source link

Continue Reading

AI Insights

Intro robotics students build AI-powered robot dogs from scratch

Published

on


Equipped with a starter robot hardware kit and cutting-edge lessons in artificial intelligence, students in CS 123: A Hands-On Introduction to Building AI-Enabled Robots are mastering the full spectrum of robotics – from motor control to machine learning. Now in its third year, the course has students build and enhance an adorable quadruped robot, Pupper, programming it to walk, navigate, respond to human commands, and perform a specialized task that they showcase in their final presentations.

The course, which evolved from an independent study project led by Stanford’s robotics club, is now taught by Karen Liu, professor of computer science in the School of Engineering, in addition to Jie Tan from Google DeepMind and Stuart Bowers from Apple and Hands-On Robotics. Throughout the 10-week course, students delve into core robotics concepts, such as movement and motor control, while connecting them to advanced AI topics.

“We believe that the best way to help and inspire students to become robotics experts is to have them build a robot from scratch,” Liu said. “That’s why we use this specific quadruped design. It’s the perfect introductory platform for beginners to dive into robotics, yet powerful enough to support the development of cutting-edge AI algorithms.”

What makes the course especially approachable is its low barrier to entry – students need only basic programming skills to get started. From there, the students build up the knowledge and confidence to tackle complex robotics and AI challenges.

Robot creation goes mainstream

Pupper evolved from Doggo, built by the Stanford Student Robotics club to offer people a way to create and design a four-legged robot on a budget. When the team saw the cute quadruped’s potential to make robotics both approachable and fun, they pitched the idea to Bowers, hoping to turn their passion project into a hands-on course for future roboticists.

“We wanted students who were still early enough in their education to explore and experience what we felt like the future of AI robotics was going to be,” Bowers said.

This current version of Pupper is more powerful and refined than its predecessors. It’s also irresistibly adorable and easier than ever for students to build and interact with.

“We’ve come a long way in making the hardware better and more capable,” said Ankush Kundan Dhawan, one of the first students to take the Pupper course in the fall of 2021 before becoming its head teaching assistant. “What really stuck with me was the passion that instructors had to help students get hands-on with real robots. That kind of dedication is very powerful.”

Code come to life

Building a Pupper from a starter hardware kit blends different types of engineering, including electrical work, hardware construction, coding, and machine learning. Some students even produced custom parts for their final Pupper projects. The course pairs weekly lectures with hands-on labs. Lab titles like Wiggle Your Big Toe and Do What I Say keep things playful while building real skills.

CS 123 students ready to show off their Pupper’s tricks. | Harry Gregory

Over the initial five weeks, students are taught the basics of robotics, including how motors work and how robots can move. In the next phase of the course, students add a layer of sophistication with AI. Using neural networks to improve how the robot walks, sees, and responds to the environment, they get a glimpse of state-of-the-art robotics in action. Many students also use AI in other ways for their final projects.

“We want them to actually train a neural network and control it,” Bowers said. “We want to see this code come to life.”

By the end of the quarter this spring, students were ready for their capstone project, called the “Dog and Pony Show,” where guests from NVIDIA and Google were present. Six teams had Pupper perform creative tasks – including navigating a maze and fighting a (pretend) fire with a water pick – surrounded by the best minds in the industry.

“At this point, students know all the essential foundations – locomotion, computer vision, language – and they can start combining them and developing state-of-the-art physical intelligence on Pupper,” Liu said.

“This course gives them an overview of all the key pieces,” said Tan. “By the end of the quarter, the Pupper that each student team builds and programs from scratch mirrors the technology used by cutting-edge research labs and industry teams today.”

All ready for the robotics boom

The instructors believe the field of AI robotics is still gaining momentum, and they’ve made sure the course stays current by integrating new lessons and technology advances nearly every quarter.

A water jet is mounted on this "firefighter" Pupper

This Pupper was mounted with a small water jet to put out a pretend fire. | Harry Gregory

Students have responded to the course with resounding enthusiasm and the instructors expect interest in robotics – at Stanford and in general – will continue to grow. They hope to be able to expand the course, and that the community they’ve fostered through CS 123 can contribute to this engaging and important discipline.

“The hope is that many CS 123 students will be inspired to become future innovators and leaders in this exciting, ever-changing field,” said Tan.

“We strongly believe that now is the time to make the integration of AI and robotics accessible to more students,” Bowers said. “And that effort starts here at Stanford and we hope to see it grow beyond campus, too.”



Source link

Continue Reading

AI Insights

Why Infuse Asset Management’s Q2 2025 Letter Signals a Shift to Artificial Intelligence and Cybersecurity Plays

Published

on


The rapid evolution of artificial intelligence (AI) and the escalating complexity of cybersecurity threats have positioned these sectors as the next frontier of investment opportunity. Infuse Asset Management’s Q2 2025 letter underscores this shift, emphasizing AI’s transformative potential and the urgent need for robust cybersecurity infrastructure to mitigate risks. Below, we dissect the macroeconomic forces, sector-specific tailwinds, and portfolio reallocation strategies investors should consider in this new paradigm.

The AI Uprising: Macro Drivers of a Paradigm Shift

The AI revolution is accelerating at a pace that dwarfs historical technological booms. Take ChatGPT, which reached 800 million weekly active users by April 2025—a milestone achieved in just two years. This breakneck adoption is straining existing cybersecurity frameworks, creating a critical gap between innovation and defense.

Meanwhile, the U.S.-China AI rivalry is fueling a global arms race. China’s industrial robot installations surged from 50,000 in 2014 to 290,000 in 2023, outpacing U.S. adoption. This competition isn’t just about economic dominance—it’s a geopolitical chess match where data sovereignty, espionage, and AI-driven cyberattacks now loom large. The concept of “Mutually Assured AI Malfunction (MAIM)” highlights how even a single vulnerability could destabilize critical systems, much like nuclear deterrence but with far less predictability.

Cybersecurity: The New Infrastructure for an AI World

As AI systems expand into physical domains—think autonomous taxis or industrial robots—so do their vulnerabilities. In San Francisco, autonomous taxi providers now command 27% market share, yet their software is a prime target for cyberattacks. The decline in AI inference costs (outpacing historical declines in electricity and memory) has made it cheaper to deploy AI, but it also lowers the barrier for malicious actors to weaponize it.


Tech giants are pouring capital into AI infrastructure—NVIDIA and Microsoft alone increased CapEx from $33 billion to $212 billion between 2014 and 2024. This influx creates a vast, interconnected attack surface. Investors should prioritize cybersecurity firms that specialize in quantum-resistant encryption, AI-driven threat detection, and real-time infrastructure protection.

The Human Element: Skills Gaps and Strategic Shifts

The demand for AI expertise is soaring, but the workforce is struggling to keep pace. U.S. AI-related IT job postings have surged 448% since 2018, while non-AI IT roles have declined by 9%. This bifurcation signals two realities:
1. Cybersecurity skills are now mission-critical for safeguarding AI systems.
2. Ethical AI development and governance are emerging as compliance priorities, particularly in regulated industries.

The data will likely show a stark divergence, reinforcing the need for investors to back training platforms and cybersecurity firms bridging this skills gap.

Portfolio Reallocation: Where to Deploy Capital

Infuse’s insights suggest three actionable strategies:

  1. Core Holdings in Cybersecurity Leaders:
    Target firms like CrowdStrike (CRWD) and Palo Alto Networks (PANW), which excel in AI-powered threat detection and endpoint security.

  2. Geopolitical Plays:
    Invest in companies addressing data sovereignty and cross-border compliance, such as Palantir (PLTR) or Cloudflare (NET), which offer hybrid cloud solutions.

  3. Emerging Sectors:
    Look to quantum computing security (e.g., Rigetti Computing (RGTI)) and AI governance platforms like DataRobot (NASDAQ: MGNI), which help enterprises audit and validate AI models.

The Bottom Line: AI’s Growth Requires a Security Foundation

The “productivity paradox” of AI—where speculative valuations outstrip tangible ROI—is real. Yet, cybersecurity is one area where returns are measurable: breaches cost companies millions, and defenses reduce risk. Investors should treat cybersecurity as the bedrock of their AI investments.

As Infuse’s letter implies, the next decade will belong to those who balance AI’s promise with ironclad security. Position portfolios accordingly.

JR Research



Source link

Continue Reading

Trending