Connect with us

AI Research

Predicting fetal well-being from cardiotocography signals using AI

Published

on


Cardiotocography (CTG) is a doppler ultrasound–based technique used during pregnancy and labor to monitor fetal well-being by recording fetal heart rate (FHR) and uterine contractions (UC). CTG can be done continuously or intermittently, with leads placed either externally or internally. External CTG involves the use of two sensors placed on the birthing parent’s belly: an ultrasound transducer placed above the fetal heart position to monitor FHR, and a tocodynamometer (pressure sensor) placed on the fundus of the uterus to measure UC.

Currently, providers interpret CTG recordings using guidelines like those from the National Institute of Child Health and Human Development (NICHD; guidelines) or the International Federation of Gynecologists and Obstetricians (FIGO; guidelines). These standards define different patterns in the CTG and FHR traces that may indicate fetal distress.

Today we present work from our recent paper, ”Development and evaluation of deep learning models for cardiotocography interpretation”, in which we describe research on our new machine learning (ML) model that will provide objective interpretation assistance to health providers to reduce burden and potentially improve fetal outcomes. Using an open-source CTG dataset, we develop end-to-end neural network-based models to predict measures of fetal well-being, including both objective (fetal arterial cord blood pH, i.e., fetal acidosis) and subjective (fetal Apgar scores) measures. Given the potential high stakes nature of the use-case if utilized in a clinical setting, we perform extensive evaluations to examine how the model performs with varying inputs, including FHR only, FHR+UC, and FHR+UC+Metadata.



Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

AI Research

(Policy Address 2025) HK earmarks HK$3B for AI research and talent recruitment – The Standard (HK)

Published

on



(Policy Address 2025) HK earmarks HK$3B for AI research and talent recruitment  The Standard (HK)



Source link

Continue Reading

AI Research

Spatially-Aware Image Focus for Visual Reasoning


View a PDF of the paper titled SIFThinker: Spatially-Aware Image Focus for Visual Reasoning, by Zhangquan Chen and 6 other authors

View PDF
HTML (experimental)

Abstract:Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware “think-with-images” framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method. Code: this https URL.

Submission history

From: Zhangquan Chen [view email]
[v1]
Fri, 8 Aug 2025 12:26:20 UTC (5,223 KB)
[v2]
Thu, 14 Aug 2025 10:34:22 UTC (5,223 KB)
[v3]
Sun, 24 Aug 2025 13:04:46 UTC (5,223 KB)
[v4]
Tue, 16 Sep 2025 09:40:13 UTC (5,223 KB)



Source link

Continue Reading

AI Research

[2506.08171] Worst-Case Symbolic Constraints Analysis and Generalisation with Large Language Models


View a PDF of the paper titled Worst-Case Symbolic Constraints Analysis and Generalisation with Large Language Models, by Daniel Koh and 4 other authors

View PDF
HTML (experimental)

Abstract:Large language models (LLMs) have demonstrated strong performance on coding tasks such as generation, completion and repair, but their ability to handle complex symbolic reasoning over code still remains underexplored. We introduce the task of worst-case symbolic constraints analysis, which requires inferring the symbolic constraints that characterise worst-case program executions; these constraints can be solved to obtain inputs that expose performance bottlenecks or denial-of-service vulnerabilities in software systems. We show that even state-of-the-art LLMs (e.g., GPT-5) struggle when applied directly on this task. To address this challenge, we propose WARP, an innovative neurosymbolic approach that computes worst-case constraints on smaller concrete input sizes using existing program analysis tools, and then leverages LLMs to generalise these constraints to larger input sizes. Concretely, WARP comprises: (1) an incremental strategy for LLM-based worst-case reasoning, (2) a solver-aligned neurosymbolic framework that integrates reinforcement learning with SMT (Satisfiability Modulo Theories) solving, and (3) a curated dataset of symbolic constraints. Experimental results show that WARP consistently improves performance on worst-case constraint reasoning. Leveraging the curated constraint dataset, we use reinforcement learning to fine-tune a model, WARP-1.0-3B, which significantly outperforms size-matched and even larger baselines. These results demonstrate that incremental constraint reasoning enhances LLMs’ ability to handle symbolic reasoning and highlight the potential for deeper integration between neural learning and formal methods in rigorous program analysis.

Submission history

From: Daniel Koh [view email]
[v1]
Mon, 9 Jun 2025 19:33:30 UTC (1,462 KB)
[v2]
Tue, 16 Sep 2025 10:35:33 UTC (1,871 KB)



Source link

Continue Reading

Trending