Connect with us

AI Insights

Artificial Intelligence (AI) in Semiconductor Market to

Published

on


Chicago, July 10, 2025 (GLOBE NEWSWIRE) — The global artificial Intelligence (AI) in semiconductor market was valued at US$ 71.91 billion in 2024 and is expected to reach US$ 321.66 billion by 2033, growing at a CAGR of 18.11% during the forecast period 2025–2033.

The accelerating deployment of generative models has pushed the artificial Intelligence (AI) in semiconductor market into an unprecedented design sprint. Transformer inference now dominates data center traffic, and the sheer compute intensity is forcing architects to co-optimize logic, SRAM, and interconnect on every new tape-out. NVIDIA’s Hopper GPUs introduced fourth-generation tensor cores wired to a terabyte-per-second cross-bar, while AMD’s MI300A fused CPU, GPU, and HBM on one package to minimize memory latency. Both examples underscore how every leading-edge node—down to three nanometers—must now be power-gated at block level to maximize tops-per-watt. Astute Analytica notes that this AI-fuelled growth currently rewards only a handful of chipmakers, creating a widening technology gap across the sector.

Download Sample Pages: https://www.astuteanalytica.com/request-sample/artificial-intelligence-in-semiconductor-market

In parallel, the artificial Intelligence (AI) in semiconductor market is reordering foundry roadmaps. TSMC has fast-tracked its chip-on-wafer-on-substrate flow specifically for AI accelerators, while Samsung Foundry is sampling gate-all-around devices aimed at 30-billion-transistor monolithic dies. ASML’s High-NA EUV scanners, delivering sub-sixteen-nanometer half-pitch, will enter volume production in 2025, largely to serve AI silicon demand. Design teams now describe node choices not by classical density metrics but by “tokens per joule,” reflecting direct alignment with model inference economics. Consequently, IP vendors are adding mixed-precision MAC arrays and near-compute cache hierarchies as default deliverables. Across every link of this chain, the market is no longer a vertical; it is the central gravity well around which high-performance chip architecture now orbits.

Key Findings in Artificial Intelligence (AI) in Semiconductor Market

Market Forecast (2033) US$ 321.66 billion
CAGR 18.11%
Largest Region (2024) North America (40%)
By Chip Type   Graphics Processing Units (GPUs) (38%)
By Technology  Machine Learning (39%)
By Application     Data Centers & Cloud Computing (35%)
By End Use Industry    IT & Data Centers (40%)
Top Drivers
  • Generative AI workloads requiring specialized GPU TPU NPU chips
  • Data center expansion fueling massive AI accelerator chip demand
  • Edge AI applications proliferating across IoT automotive surveillance devices
Top Trends
  • AI-driven EDA tools automating chip design verification layout optimization
  • Custom AI accelerators outperforming general-purpose processors for specific tasks
  • Advanced packaging technologies like CoWoS enabling higher AI performance
Top Challenges
  • Only 9% companies successfully deployed AI use cases
  • Rising manufacturing costs requiring multi-billion dollar advanced fab investments

Edge Inference Accelerators Push Packaging Innovation Across Global Supply Chains

Consumer devices increasingly host large-language-model assistants locally, propelling the artificial Intelligence (AI) in semiconductor market toward edge-first design targets. Apple’s A17 Pro integrated a sixteen-core neural engine that surpasses thirty-five trillion operations per second, while Qualcomm’s Snapdragon X Elite moves foundation-model inference onto thin-and-light laptops. Achieving such feats inside battery-powered envelopes drives feverish experimentation in 2.5-D packaging, where silicon interposers shorten inter-die routing by two orders of magnitude. Intel’s Foveros Direct hybrid bonding now achieves bond pitches below ten microns, enabling logic and SRAM tiles to be stacked with less than one percent resistive overhead—numbers that previously required monolithic approaches.

Because thermal limits govern mobile form factors, power-delivery networks and vapor-chamber designs are being codesigned with die placement. STMicroelectronics and ASE have showcased fan-out panel-level packaging that enlarges substrate real estate without sacrificing yield. Such advances matter enormously: every millimeter saved in board footprint frees antenna volume for 5G and Wi-Fi 7 radios, helping OEMs offer always-connected AI assistants. Omdia estimates that more than nine hundred million edge-AI-capable devices will ship annually by 2026, a figure already steering substrate suppliers to triple capacity. As this tidal wave builds, the artificial Intelligence (AI) in semiconductor market finds its competitive frontier less at wafer fabs and more at the laminate, micro-bump, and dielectric stack where edge performance is ultimately won.

Foundry Capacity Race Intensifies Under Generative AI Compute Demand Surge

A single training run for a frontier model can consume gigawatt-hours of energy and reserve hundreds of thousands of advanced GPUs for weeks. This reality has made hyperscale cloud operators the kingmakers of the artificial Intelligence (AI) in semiconductor market. In response, TSMC, Samsung, and Intel Foundry Services have all announced overlapping expansions across Arizona, Pyeongtaek, and Magdeburg that collectively add more than four million wafer starts per year in the sub-five-nanometer domain. While capital outlays remain staggering, none of these announcements quote utilization percentages—underscoring an industry assumption that every advanced tool will be fully booked by AI silicon as soon as it is installed.

Supply tightness is amplified by the extreme EUV lithography ecosystem, where the world relies on a single photolithography vendor and two pellicle suppliers. Any hiccup cascades through quarterly availability of AI accelerators, directly influencing cloud pricing for inference APIs. Consequently, second-tier foundries such as GlobalFoundries and UMC are investing in specialized twelve-nanometer nodes optimized for voltage-domained matrix engines rather than chasing absolute density. Their strategy addresses commercial segments like industrial vision and automotive autonomy, where long-lifecycle support trumps bleeding-edge speed. Thus, the artificial Intelligence (AI) in semiconductor market is bifurcating into hyper-advanced capacity monopolized by hyperscalers and mature-node capacity securing diversified, stable profit pools.

EDA Tools Adopt AI Techniques To Shorten Tapeout And Verification

Shrink cycles measured in months, not years, are now expected in the artificial Intelligence (AI) in semiconductor market, creating overwhelming verification workloads. To cope, EDA vendors are infusing their flow with machine-learning engines that prune test-bench vectors, auto-rank bugs, and predict routing congestion before placement kicks off. Synopsys’ DSO.ai has publicly reported double-digit power reductions and week-level schedule savings across more than two hundred tap-outs; although percentages are withheld, these gains translate to thousands of engineering hours reclaimed. Cadence, for its part, integrated a reinforcement-learning placer that autonomously explores millions of layout permutations overnight on cloud instances.

The feedback loop turns virtuous: as AI improves EDA, the resulting chips further accelerate AI workloads, driving yet more demand for smarter design software. Start-ups like Celestial AI and d-Maze leverage automated formal verification to iterate photonic interconnect fabrics—an area formerly bottlenecked by manual proofs. Meanwhile, open-source initiatives such as OpenROAD are embedding graph neural networks to democratize back-end flow access for smaller firms that still hope to participate in the market. The outcome is a compression of development timelines that historically favored large incumbents, now allowing nimble teams to move from RTL to packaged samples in under nine months without incurring schedule-driven defects.

Memory Technologies Evolve For AI, Raising Bandwidth And Power Efficiency

Every additional token processed per second adds pressure on memory, making this subsystem the next battleground within the artificial Intelligence (AI) in semiconductor market. High Bandwidth Memory generation four now approaches fourteen hundred gigabytes per second per stack, yet large-language-model parameter counts still saturate these channels. To alleviate the pinch, SK hynix demonstrated HBM4E engineering samples with sixteen-high stacks bonded via hybrid thermal compression, cutting bit access energy below four picojoules. Micron answered with GDDR7 tailored for AI PCs, doubling prefetch length to reduce command overhead in mixed-precision inference.

Emerging architectures focus on moving compute toward memory. Samsung’s Memory-Semantics Processing Unit embeds arithmetic units in the buffer die, enabling sparse matrix multiplication within the HBM stack itself. Meanwhile, UCIe-compliant chiplet interfaces allow accelerator designers to tile multiple DRAM slices around a logic die, hitting aggregate bandwidth once reserved for supercomputers. Automotive suppliers are porting these ideas to LPDDR5X so driver-assistance SoCs can fuse radar and vision without exceeding vehicle thermal budgets. In short, the artificial Intelligence (AI) in semiconductor market is witnessing a profound redefinition of memory—from passive storehouse to active participant—where bytes per flop and picojoules per bit now sit alongside clock frequency as primary specification lines.

IP Cores And Chiplets Enable Modular Scaling For Specialized AI

Custom accelerators no longer begin with a blank canvas; instead, architects assemble silicon from pre-verified IP cores and chiplets sourced across a vibrant ecosystem. This trend, central to the artificial Intelligence (AI) in semiconductor market, mirrors software’s earlier shift toward microservices. For instance, Tenstorrent licenses RISC-V compute tile stacks that partners stitch into bespoke retinal-processing ASICs, while ARM’s Ethos-U NPU drops into microcontrollers for always-on keyword spotting. By relying on hardened blocks, teams sidestep months of DFT and timing closure, channeling effort into algorithm–hardware co-design.

The chiplet paradigm scales this philosophy outward. AMD’s Instinct accelerator families already combine compute CCDs, memory cache dies, and I/O hubs over Infinity Fabric links measured in single-digit nanoseconds. Open-source UCIe now defines lane discovery, flow-control, and integrity checks so different vendors can mix dies from separate foundries. That interoperability lowers NRE thresholds, enabling medical-imaging firms, for example, to integrate an FDA-certified DSP slice beside a vision transformer engine on the same organic substrate. Thus, modularity is not just a cost lever; it is an innovation catalyst ensuring the artificial Intelligence (AI) in semiconductor market accommodates both hyperscale giants and niche players solving domain-specific inference challenges.

Geographic Shifts Highlight New Hubs For AI-Focused Semiconductor Fabrication Activity

While the Pacific Rim remains dominant, geopolitical and logistical realities are spawning fresh hubs tightly coupled to the artificial Intelligence (AI) in semiconductor market. The US CHIPS incentives have drawn start-ups like Cerebras and Groq to co-locate near new fabs in Arizona, creating vertically integrated corridors where mask generation, wafer processing, and module assembly occur within a fifty-mile radius. Europe, backed by its Important Projects of Common European Interest framework, is nurturing Dresden and Grenoble as centers for AI accelerator prototyping, with IMEC providing advanced 300-millimeter pilot lines that match leading commercial nodes.

In the Middle East, the United Arab Emirates is funding RISC-V design houses focused on Arabic-language LLM accelerators, leveraging proximity to sovereign data centers hungry for energy-efficient inference. India’s Semiconductor Mission has prioritized packaging over leading-edge lithography, recognizing that back-end value capture aligns with the tidal rise of edge devices described earlier. Collectively, these moves diversify supply, but they also foster regional specialization: power-optimized inference chips in hot climates, radiation-hardened AI processors near space-technology clusters, and privacy-enhanced silicon in jurisdictions with strict data-sovereignty norms. Each development underscores how the artificial Intelligence (AI) in semiconductor market is simultaneously global in scale yet increasingly local in execution, as ecosystems tailor fabrication to indigenous talent and demand profiles.

Need Custom Data? Let Us Know: https://www.astuteanalytica.com/ask-for-customization/artificial-intelligence-in-semiconductor-market

Corporate Strategies Realign As AI Reshapes Traditional Semiconductor Value Chains

The gravitational pull of AI compute has forced corporate boards to revisit decade-old playbooks. Vertical integration, once considered risky, is resurging across the artificial Intelligence (AI) in semiconductor market. Nvidia’s acquisition of Mellanox and subsequent creation of NVLink-native DPUs illustrates how control of the network stack safeguards GPU value. Likewise, Apple’s progressive replacement of third-party modems with in-house designs highlights a commitment to end-to-end user-experience tuning for on-device intelligence. Even contract foundries now offer reference chiplet libraries, blurring lines between pure-play manufacturing and design enablement.

Meanwhile, fabless firms are forging multi-sourcing agreements to hedge supply volatility. AMD collaborates with both TSMC and Samsung, mapping identical RTL onto different process recipes to guarantee product launch windows. At the opposite end, some IP vendors license compute cores under volume-based royalties tied to AI inference throughput, rather than wafer count, aligning revenue with customer success. Investor sentiment mirrors these shifts: McKinsey observes that market capitalization accrues disproportionately to companies mastering AI-centric design-manufacturing loops, leaving laggards scrambling for relevance. Ultimately, the artificial Intelligence (AI) in semiconductor market is dissolving historical boundaries—between design and manufacturing, hardware and software, core and edge—creating a new competitive landscape where agility, ecosystem orchestration, and algorithmic insight determine enduring advantage.

Artificial Intelligence in Semiconductor Market Major Players:

  • NVIDIA Corporation
  • Intel Corporation
  • Advanced Micro Devices (AMD)
  • Qualcomm Technologies, Inc.
  • Alphabet Inc. (Google)
  • Apple Inc.
  • Samsung Electronics Co., Ltd.
  • Broadcom Inc.
  • Taiwan Semiconductor Manufacturing Company (TSMC)
  • Samsung Electronics
  • Other Prominent Players

Key Segmentation:

By Chip Type

  • Central Processing Units (CPUs)
  • Graphics Processing Units (GPUs)
  • Field-Programmable Gate Arrays (FPGAs)
  • Application-Specific Integrated Circuits (ASICs)
  • Tensor Processing Units (TPUs)

By Technology 

  • Machine Learning
  • Deep Learning
  • Natural Language Processing (NLP)
  • Computer Vision
  • Others

By Application

  • Autonomous Vehicles
  • Robotics
  • Consumer Electronics
  • Healthcare & Medical Imaging
  • Industrial Automation
  • Smart Manufacturing
  • Security & Surveillance
  • Data Centers & Cloud Computing
  • Others (Smart Home Devices, Wearables, etc.)

By End-Use Industry

  • Automotive
  • Electronics & Consumer Devices
  • Healthcare
  • Industrial
  • Aerospace & Defense
  • Telecommunication
  • IT & Data Centers
  • Others

By Region

  • North America
  • Europe
  • Asia Pacific
  • Middle East
  • Africa
  • South America

Have Questions? Reach Out Before Buying: https://www.astuteanalytica.com/inquire-before-purchase/artificial-intelligence-in-semiconductor-market

About Astute Analytica

Astute Analytica is a global market research and advisory firm providing data-driven insights across industries such as technology, healthcare, chemicals, semiconductors, FMCG, and more. We publish multiple reports daily, equipping businesses with the intelligence they need to navigate market trends, emerging opportunities, competitive landscapes, and technological advancements.

With a team of experienced business analysts, economists, and industry experts, we deliver accurate, in-depth, and actionable research tailored to meet the strategic needs of our clients. At Astute Analytica, our clients come first, and we are committed to delivering cost-effective, high-value research solutions that drive success in an evolving marketplace.

Contact Us:
Astute Analytica
Phone: +1-888 429 6757 (US Toll Free); +91-0120- 4483891 (Rest of the World)
For Sales Enquiries: sales@astuteanalytica.com
Website: https://www.astuteanalytica.com/
Follow us on: LinkedIn Twitter YouTube

            





Source link

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

AI Insights

Ramp Debuts AI Agents Designed for Company Controllers

Published

on


Financial operations platform Ramp has debuted its first artificial intelligence (AI) agents.

The new offering is designed for controllers, helping them to automatically enforce company expense policies, block unauthorized spending, and stop fraud, and is the first in a series of agents slated for release this year, the company said in a Thursday (July 10) news release.

“Finance teams are being asked to do more with less, yet the function remains largely manual,” Ramp said in the release. “Teams using legacy platforms today spend up to 70% of their time on tasks like expense review, policy enforcement, and compliance audits. As a result, 59% of professionals in controllership roles report making several errors each month.”

Ramp says its controller-centric agents solve these issues by doing away with redundant tasks, and working autonomously to go over expenses and enforce policy, applying “context-aware, human-like” reasoning to manage entire workflows on their own.

“Unlike traditional automation that relies on basic rules and conditional logic, these agents reason and act on behalf of the finance team, working independently to enforce spend policies at scale, immediately prevent violations, and continuously improve company spending guidelines,” the release added.

PYMNTS wrote earlier this week about the “promise of agentic AI,” systems that not only generate content or parse data, but move beyond passive tasks to make decisions, initiate workflows and even interact with other software to complete projects.

“It’s AI not just with brains, but with agency,” that report said.

Industries including finance, logistics and healthcare are using these tools for things like booking meetings, processing invoices or managing entire workflows autonomously.

But although some corporate leaders might hold lofty views for autonomous AI, the latest PYMNTS Intelligence in the June 2025 CAIO Report, “AI at the Crossroads: Agentic Ambitions Meet Operational Realities,” shows a trust gap among executives when it comes to agentic AI that highlights serious concerns about accountability and compliance.

“However, full-scale enterprise adoption remains limited,” PYMNTS wrote. “Despite growing capabilities, agentic AI is being deployed in experimental or limited pilot settings, with the majority of systems operating under human supervision.”

But what makes mid-market companies uneasy about tapping into the power of autonomous AI? The answer is strategic and psychological, PYMNTS added, noting that while the technological potential is enormous, the readiness of systems (and humans) is much murkier.

“For AI to take action autonomously, executives must trust not just the output, but the entire decision-making process behind it. That trust is hard to earn — and easy to lose,” PYMNTS wrote, noting that the research “found that 80% of high-automation enterprises cite data security and privacy as their top concern with agentic AI.”



Source link

Continue Reading

AI Insights

How automation is using the latest technology across various sectors

Published

on


Artificial Intelligence and automation are often used interchangeably. While the technologies are similar, the concepts are different. Automation is often used to reduce human labor for routine or predictable tasks, while A.I. simulates human intelligence that can eventually act independently.

“Artificial intelligence is a way of making workers more productive, and whether or not that enhanced productivity leads to more jobs or less jobs really depends on a field-by-field basis,” said senior advisor Gregory Allen with the Wadhwani A.I. center at the Center for Strategic and International Studies. “Past examples of automation, such as agriculture, in the 1920s, roughly one out of every three workers in America worked on a farm. And there was about 100 million Americans then. Fast forward to today, and we have a country of more than 300 million people, but less than 1% of Americans do their work on a farm.”

A similar trend happened throughout the manufacturing sector. At the end of the year 2000, there were more than 17 million manufacturing workers according to the U.S. Bureau of Labor statistics and the Federal Reserve Bank of St. Louis. As of June, there are 12.7 million workers. Research from the University of Chicago found, while automation had little effect on overall employment, robots did impact the manufacturing sector. 

“Tractors made farmers vastly more productive, but that didn’t result in more farming jobs. It just resulted in much more productivity in agriculture,” Allen said.

ARTIFICIAL INTELLIGENCE DRIVES DEMAND FOR ELECTRIC GRID UPDATE

Researchers are able to analyze the performance of Major League Baseball pitchers by using A.I. algorithms and stadium camera systems. (University of Waterloo / Fox News)

According to our Fox News Polling, just 3% of voters expressed fear over A.I.’s threat to jobs when asked about their first reaction to the technology without a listed set of responses. Overall, 43% gave negative reviews while 26% reacted positively.

Robots now are being trained to work alongside humans. Some have been built to help with household chores, address worker shortages in certain sectors and even participate in robotic sporting events.

The most recent data from the International Federation of Robotics found more than 4 million robots working in factories around the world in 2023. 70% of new robots deployed that year, began work alongside humans in Asia. Many of those now incorporate artificial intelligence to enhance productivity.

“We’re seeing a labor shortage actually in many industries, automotive, transportation and so on, where the older generation is going into retirement. The middle generation is not interested in those tasks anymore and the younger generation for sure wants to do other things,” Arnaud Robert with Hexagon Robotics Division told Reuters.

Hexagon is developing a robot called AEON. The humanoid is built to work in live industrial settings and has an A.I. driven system with special intelligence. Its wheels help it move four times faster than humans typically walk. The bot can also go up steps while mapping its surroundings with 22 sensors.

ARTIFICIAL INTELLIGENCE FUELS BIG TECH PARTNERSHIPS WITH NUCLEAR ENERGY PRODUCERS

gif of AI rendering of pitching throwing a ball

Researchers are able to create 3D models of pitchers, which athletes and trainers could study from multiple angles. (University of Waterloo)

“What you see with technology waves is that there is an adjustment that the economy has to make, but ultimately, it makes our economy more dynamic,” White House A.I. and Crypto Czar David Sacks said. “It increases the wealth of our economy and the size of our economy, and it ultimately improves productivity and wages.”

Driverless cars are also using A.I. to safely hit the road. Waymo uses detailed maps and real-time sensor data to determine its location at all times.

“The more they send these vehicles out with a bunch of sensors that are gathering data as they drive every additional mile, they’re creating more data for that training data set,” Allen said.

Even major league sports are using automation, and in some cases artificial intelligence. Researchers at the University of Waterloo in Canada are using A.I. algorithms and stadium camera systems to analyze Major League Baseball pitcher performance. The Baltimore Orioles joint-funded the project called Pitchernet, which could help improve form and prevent injuries. Using Hawk-Eye Innovations camera systems and smartphone video, researchers created 3D models of pitchers that athletes and trainers could study from multiple angles. Unlike most video, the models remove blurriness, giving a clearer view of the pitcher’s movements. Researchers are also exploring using the Pitchernet technology in batting and other sports like hockey and basketball.

ELON MUSK PREDICTS ROBOTS WILL OUTSHINE EVEN THE BEST SURGEONS WITHIN 5 YEARS

graphic overview of ptichernet system of baseball player's pitching skills

Overview of a PitcherNet System graphics analyzing a pitcher’s baseball throw. (University of Waterloo)

The same technology is also being used as part of testing for an Automated Ball-Strike System, or ABS. Triple-A minor league teams have been using the so-called robot umpires for the past few seasons. Teams tested both situations in which the technology called every pitch and when it was used as challenge system. Major League Baseball also began testing the challenge system in 13 of its spring training parks across Florida and Arizona this February and March.

Each team started a game with two challenges. The batter, pitcher and catcher were the only players who could contest a ball-strike call. Teams lost a challenge if the umpire’s original call was confirmed. The system allowed umpires to keep their jobs, while strike zone calls were slightly more accurate. According to MLB, just 2.6% of calls were challenged throughout spring training games that incorporated ABS. 52.2% of those challenges were overturned. Catchers had the highest success rate at 56%, followed by batters at 50% and pitchers at 41%.

GET FOX BUSINESS ON THE GO BY CLICKING HERE

Triple-A announced last summer it would shift to a full challenge system. MLB commissioner Rob Manfred said in June, MLB could incorporate the automated system into its regular season as soon as 2026. The Athletic reports, major league teams would use the same challenge system from spring training, with human umpires still making the majority of the calls.

Many companies across other sectors agree that machines should not go unsupervised.

“I think that we should always ensure that AI remains under human control,” Microsoft Vice Chair and President Brad Smith said.  “One of first proposals we made early in 2023 was to insure that A.I., always has an off switch, that it has an emergency brake. Now that’s the way high-speed trains work. That’s the way the school buses, we put our children on, work. Let’s ensure that AI works this way as well.”



Source link

Continue Reading

AI Insights

Artificial intelligence predicts which South American cities will disappear by 2100

Published

on


The effects of global warming and climate change are being felt around the world. Extreme weather events are expected to become more frequent from droughts to floods wreaking havoc on communities as well as blistering heatwaves and bone-chilling cold snaps.

While these will affect localized areas temporarily, one inescapable consequence of the increasing temperatures for costal communities around the globe is rising sea levels. This phenomenon will have even more far-reaching effects, displacing hundreds of millions of people as coastal communities are inundated by water, some permanently.

These South American cities will disappear

While there is no doubt that sea levels will rise, predicting exactly how much they will in any given location is a tricky business. This is because oceans don’t rise uniformly as more water is added to the total volume.

However, according to models from the Intergovernmental Panel on Climate Change (IPCC) the most optimistic scenario is between 11 inches and almost 22 inches, if we can curb carbon emissions and keep the temperature rise to 1.5C by 2050. The worst case scenario would be 6 and a half feet by the end of the century.

Caracol Radio in Colombia asked various artificial intelligence systems which cities in South America would disappear due to rising sea levels within the next 200 years. These are the ones most at risk according to their findings:

  • Santos, Brazil
  • Macaió, Brazil
  • Floreanópolis, Brazil
  • Mar de Plata, Argentina
  • Barranquilla, Colombia
  • Lima, Peru
  • Cartagena, Colombia
  • Paramaribo, Surinam
  • Georgetown, Guayana

The last two will be underwater by the end of the century according to modeling done by the non-profit Climate Central along with numerous other communities in low-lying coastal areas.

Their simulator only makes forecasts until the year 2100 as the above image shows for the areas along the northeastern coast of South America including Paramaribo and Georgetown.

Related stories

Get your game on! Whether you’re into NFL touchdowns, NBA buzzer-beaters, world-class soccer goals, or MLB home runs, our app has it all.

Dive into live coverage, expert insights, breaking news, exclusive videos, and more – plus, stay updated on the latest in current affairs and entertainment. Download now for all-access coverage, right at your fingertips – anytime, anywhere.



Source link

Continue Reading

Trending