Connect with us

AI Research

Wiley Partners with Anthropic to Accelerate Responsible AI Integration Across Scholarly Research

Published

on


Global publisher adopts Model Context Protocol (MCP) to enable seamless research access across AI platforms

HOBOKEN, N.J., July 09, 2025–(BUSINESS WIRE)–Wiley (NYSE: WLY), one of the world’s largest publishers and a trusted leader in research and learning, today announced plans for a strategic partnership with Anthropic, a leading artificial intelligence research and development company with an emphasis on responsible AI.

Wiley is adopting the Model Context Protocol (MCP), an open standard created by Anthropic, which will enable seamless integration between authoritative, peer-reviewed content and AI tools across multiple platforms. Beginning with a pilot program, and subject to definitive agreement, Wiley and Anthropic will work to ensure university partners have streamlined, enhanced access to their Wiley research content.

Another key focus of the partnership is to establish standards for how AI tools properly integrate scientific journal content into results while providing appropriate context for users, including author attribution and citations.

“The future of research lies in ensuring that high-quality, peer-reviewed content remains central to AI-powered discovery,” said Josh Jarrett, Senior Vice President of AI Growth at Wiley. “Through this partnership, Wiley is not only setting the standard for how academic publishers integrate trusted scientific content with AI platforms but is also creating a scalable solution that other institutions and publishers can adopt. By adopting MCP, we’re demonstrating our commitment to interoperability and helping to ensure authoritative, peer-reviewed research will be discoverable in an increasingly AI-driven landscape.”

The announcement coincides with Anthropic’s broader Claude for Education initiative, which highlights new partnerships and tools designed to amplify teaching, learning, administration and research in higher education.

“We’re excited to partner with Wiley to explore how AI can accelerate and enhance access to scientific research,” said Lauren Collett, who leads Higher Education partnerships at Anthropic. “This collaboration demonstrates our commitment to building AI that amplifies human thinking—enabling students to access peer-reviewed content with Claude, enhancing learning and discovery while maintaining proper citation standards and academic integrity.”

Researchers and students at institutions piloting the integration will be able to seamlessly access scientific journal content from Wiley directly within Claude, creating more efficient research workflows.





Source link

AI Research

E-research library with AI tools to assist lawyers | Delhi News

Published

on


New Delhi: In an attempt to integrate legal work in courts with artificial intelligence, Bar Council of Delhi (BCD) has opened a one-of-its-kind e-research library at the Rouse Avenue courts. Inaugurated on July 5 by law minister Kapil Mishra, the library has various software to assist lawyers in their legal work. With initial funding of Rs 20 lakh, BCD functionaries told TOI that they are also planning the expansion of the library to be accessed from anywhere.Named after former BCD chairman BS Sherawat, the library boasts an integrated system, including the legal research platform SCC Online, the legal research online database Manupatra, and an AI platform, Lucio, along with several e-books on law across 15 desktops.Advocate Neeraj, president of Central Delhi Bar Court Association, told TOI, “The vision behind this initiative is to help law practitioners in their research. Lawyers are the officers of the honourable court who assist the judicial officer to reach a verdict in cases. This library will help lawyers in their legal work. Keeping that in mind, considering a request by our association, BCD provided us with funds and resources.”The library, which runs from 9:30 am to 5:30 pm, aims to develop a mechanism with the help of the evolution of technology to allow access from anywhere in the country. “We are thinking along those lines too. It will be good if a lawyer needs some research on some law point and can access the AI tools from anywhere; she will be able to upgrade herself immediately to assist the court and present her case more efficiently,” added Neeraj.Staffed with one technical person and a superintendent, the facility will incur around Rs 1 lakh per month to remain functional.With pendency in Delhi district courts now running over 15.3 lakh cases, AI tools can help law practitioners as well as the courts. Advocate Vikas Tripathi, vice-president of Central Delhi Court Bar Association, said, “Imagine AI tools which can give you relevant references, cite related judgments, and even prepare a case if provided with proper inputs. The AI tools have immense potential.”In July 2024, ‘Adalat AI’ was inaugurated in Delhi’s district courts. This AI-driven speech recognition software is designed to assist court stenographers in transcribing witness examinations and orders dictated by judges to applications designed to streamline workflow. This tool automates many processes. A judicial officer has to log in, press a few buttons, and speak out their observations, which are automatically transcribed, including the legal language. The order is automatically prepared.The then Delhi High Court Chief Justice, now SC Judge Manmohan, said, “The biggest problem I see judges facing is that there is a large demand for stenographers, but there’s not a large pool available. I think this app will solve that problem to a large extent. It will ensure that a large pool of stenographers will become available for other purposes.” At present, the application is being used in at least eight states, including Kerala, Karnataka, Andhra Pradesh, Delhi, Bihar, Odisha, Haryana and Punjab.





Source link

Continue Reading

AI Research

Enterprises will strengthen networks to take on AI, survey finds

Published

on


  • Private data centers: 29.5%
  • Traditional public cloud: 35.4%
  • GPU as a service specialists: 18.5%
  • Edge compute: 16.6%

“There is little variation from training to inference, but the general pattern is workloads are concentrated a bit in traditional public cloud and then hyperscalers have significant presence in private data centers,” McGillicuddy explained. “There is emerging interest around deploying AI workloads at the corporate edge and edge compute environments as well, which allows them to have workloads residing closer to edge data in the enterprise, which helps them combat latency issues and things like that. The big key takeaway here is that the typical enterprise is going to need to make sure that its data center network is ready to support AI workloads.”

AI networking challenges

The popularity of AI doesn’t remove some of the business and technical concerns that the technology brings to enterprise leaders.

According to the EMA survey, business concerns include security risk (39%), cost/budget (33%), rapid technology evolution (33%), and networking team skills gaps (29%). Respondents also indicated several concerns around both data center networking issues and WAN issues. Concerns related to data center networking included:

  • Integration between AI network and legacy networks: 43%
  • Bandwidth demand: 41%
  • Coordinating traffic flows of synchronized AI workloads: 38%
  • Latency: 36%

WAN issues respondents shared included:

  • Complexity of workload distribution across sites: 42%
  • Latency between workloads and data at WAN edge: 39%
  • Complexity of traffic prioritization: 36%
  • Network congestion: 33%

“It’s really not cheap to make your network AI ready,” McGillicuddy stated. “You might need to invest in a lot of new switches and you might need to upgrade your WAN or switch vendors. You might need to make some changes to your underlay around what kind of connectivity your AI traffic is going over.”

Enterprise leaders intend to invest in infrastructure to support their AI workloads and strategies. According to EMA, planned infrastructure investments include high-speed Ethernet (800 GbE) for 75% of respondents, hyperconverged infrastructure for 56% of those polled, and SmartNICs/DPUs for 45% of surveyed network professionals.



Source link

Continue Reading

AI Research

Amazon Web Services builds heat exchanger to cool Nvidia GPUs for AI

Published

on


The letters AI, which stands for “artificial intelligence,” stand at the Amazon Web Services booth at the Hannover Messe industrial trade fair in Hannover, Germany, on March 31, 2025.

Julian Stratenschulte | Picture Alliance | Getty Images

Amazon said Wednesday that its cloud division has developed hardware to cool down next-generation Nvidia graphics processing units that are used for artificial intelligence workloads.

Nvidia’s GPUs, which have powered the generative AI boom, require massive amounts of energy. That means companies using the processors need additional equipment to cool them down.

Amazon considered erecting data centers that could accommodate widespread liquid cooling to make the most of these power-hungry Nvidia GPUs. But that process would have taken too long, and commercially available equipment wouldn’t have worked, Dave Brown, vice president of compute and machine learning services at Amazon Web Services, said in a video posted to YouTube.

“They would take up too much data center floor space or increase water usage substantially,” Brown said. “And while some of these solutions could work for lower volumes at other providers, they simply wouldn’t be enough liquid-cooling capacity to support our scale.”

Rather, Amazon engineers conceived of the In-Row Heat Exchanger, or IRHX, that can be plugged into existing and new data centers. More traditional air cooling was sufficient for previous generations of Nvidia chips.

Customers can now access the AWS service as computing instances that go by the name P6e, Brown wrote in a blog post. The new systems accompany Nvidia’s design for dense computing power. Nvidia’s GB200 NVL72 packs a single rack with 72 Nvidia Blackwell GPUs that are wired together to train and run large AI models.

Computing clusters based on Nvidia’s GB200 NVL72 have previously been available through Microsoft or CoreWeave. AWS is the world’s largest supplier of cloud infrastructure.

Amazon has rolled out its own infrastructure hardware in the past. The company has custom chips for general-purpose computing and for AI, and designed its own storage servers and networking routers. In running homegrown hardware, Amazon depends less on third-party suppliers, which can benefit the company’s bottom line. In the first quarter, AWS delivered the widest operating margin since at least 2014, and the unit is responsible for most of Amazon’s net income.

Microsoft, the second largest cloud provider, has followed Amazon’s lead and made strides in chip development. In 2023, the company designed its own systems called Sidekicks to cool the Maia AI chips it developed.

WATCH: AWS announces latest CPU chip, will deliver record networking speed



Source link

Continue Reading

Trending