Connect with us

Events & Conferences

How a lifelong music student uses melody and lyrics in TTS research

Published

on


Ariadna Sanchez grew up steeped in the world of music performance and orchestra, learning to play violin at age 5 and setting her sights on a life in music. Today she’s a text-to-speech (TTS) research scientist at Amazon — and those early musical interests contributed to her career path.

Sanchez works in polyglot TTS, which involves researching voice models that can speak any language with a native accent. Ultimately, TTS is a mixed discipline — not just engineering or purely tech — and Sanchez says her musical background leads her to find novel solutions or look at problems in a unique way.

Linking music with tech

Growing up with a music-intensive education in Barcelona, Spain, Sanchez was thinking ahead to university by the time she was 15, and she wanted to find a degree program with a connection to music. She found one in the telecommunications engineering department at Barcelona’s Polytechnic University of Catalonia, where one of the branches was speech, music, and video processing. She was also intrigued by the program’s AI and machine learning offerings.

Ariadna Sanchez said a professor at Barcelona’s Polytechnic University of Catalonia helped pique her interest in text-to-speech research.

Courtesy of Ariadna Sanchez

At the time, she was focused on music and how it could be applied to machine learning. One of her professors was working on creating a voice that could be modulated in different ways to sound more human, combining language and technological elements.

“That got me into the path of realizing ‘Oh, I actually really like this TTS side of things,’” she says. An internship at an acoustics consultancy also helped her realize that she wanted to do work where she could look for breakthroughs and “discover new things,” she says.

In her senior thesis, she combined those interests to develop an audio-based game. Especially attracted to well-written, story-based games, Sanchez says she plays all types of video games, which are a hobby and a passion for her.

“I tried to understand how acoustics from different environments can affect the player’s perception and how the player can enjoy and navigate through an audio-only game,” she says.

The path to TTS research

An internship at Telefónica, where her work involved machine learning that focused on text-based natural language processing, helped determine the next steps on her journey. After finishing her undergraduate degree, she pursued a master’s in speech and language processing at the University of Edinburgh in Scotland.

Ariadna Sanchez took it upon herself to learn more about the nuances of languages including English, Scottish Gaelic, and Japanese.

Courtesy of Ariadna Sanchez

There she studied natural language understanding, human-computer interaction, text-to-speech, and automatic speech recognition.

“I found TTS to be more engaging, overall,” she says. “Speech is not only about what you say, but also how you say it, how the person speaking sounds, et cetera.”

Sanchez took it upon herself to learn more about the nuances of languages including English, Scottish Gaelic, and Japanese. She links her fascination with that subject to her longtime interest in a wide variety of music, from punk to classical to mainstream pop and fusion styles. Her TTS research also piqued her interest in learning about languages and how they differ from each other.

Translating text

Transfer learning using limited contrastive data improves formality accuracy without compromising performance.

“I have always really liked melodic music with lyrics, which made me intrigued about the nuances of language, how lyrics are composed and semantics of language,” she says. “It also made me really invested in learning languages to be able to understand the music I listen to.”

When Amazon recruiters visited the University of Edinburgh as Sanchez was finishing her degree, they were looking for a language engineer fluent in Spanish and hired her as a language engineer intern.

That internship resulted in a full-time role at Amazon.

“My background is mostly on the engineering side, so I not only built more skills on the linguistics front during my internship, but I also learned a lot about how a team cooperates, and how important prioritization is to make a project successful.”

Many accents, one voice

Now, almost four years into her job as a research scientist, Sanchez focuses on providing a more uniform voice experience. In the past, new languages and accents on Echo devices have had distinct voices, such as American Spanish and European Spanish, which sound like two different people. The goal of Sanchez’s research is to design models that pronounce words from various languages with the correct local accent, but in the same voice, for continuity.

Alexa speaking in several languages in a masculine-sounding voice

“If you have a multilingual household like mine, it’s a bit weird to have different voices speaking different languages,” she noted. “But if you have the same person speaking all these different languages back to you, it sounds less jarring.” She and her team have already proven this can work by having the British English and American English masculine-sounding speakers now using the same voice.

Sanchez says that her work is also influenced by her reading about technology ethics, especially works by authors Cathy O’Neil and Caroline Criado Perez.

Mitigating bias

Test set includes 1,150 text segments, each in nine languages.

“Providing more voice options is important,” she says. “Having a bigger range of voices brings more variety and brings more validation to different communities.” To that end, her team works on developing polyglot voices that represent a wider range of voices and speaking styles.

In September of this year, Sanchez presented “Unify and conquer: How phonetic feature representation affects polyglot text-to-speech (TTS)” at Interspeech 2022. The paper — one of three accepted to Interspeech — explored the two primary approaches to representing linguistic features within a multilingual model.

In the paper, Sanchez and her coauthors note that: “The main contribution of this paper lies in the experimentation and evaluation aimed at understanding how unified representations and separate representations of input linguistic features affect the quality of Polyglot synthesis in terms of naturalness and accent of the voice. To the best of our knowledge, this is the first work conducting a systematic study and evaluation on this subject.”

“When we were looking at our design choices for multispeaker multilingual models, we did not find any literature that compared different types of linguistic features thoroughly,” she says. “We decided to explore and write about two very distinct approaches to representing input linguistic features — unifying them based on phonetic knowledge, or separating all tokens that represent phonemes from different languages/accents. With this, we found that using a unified representation led to more natural and stable speech, while also having cleaner accent.”

And while this was an important step, Sanchez emphasized there are several more steps to take: “To move forward in the field, we need to improve the control we have on speech parameters, like pitch, intonation, tone, and timbre, in isolation.”

She and her team continue to work toward even more natural-sounding speech that is closer to the way people actually speak.

“We’re at a very exciting point of text-to-speech, where we are moving away from the old TTS systems that sounded robotic towards a more approachable and friendly voice,” she says. “In the end, that is an important factor that allows our customers to have more engaging conversations with Alexa every day.”





Source link

Events & Conferences

A New Ranking Framework for Better Notification Quality on Instagram

Published

on


  • We’re sharing how Meta is applying machine learning (ML) and diversity algorithms to improve notification quality and user experience. 
  • We’ve introduced a diversity-aware notification ranking framework to reduce uniformity and deliver a more varied and engaging mix of notifications.
  • This new framework reduces the volume of notifications and drives higher engagement rates through more diverse outreach.

Notifications are one of the most powerful tools for bringing people back to Instagram and enhancing engagement. Whether it’s a friend liking your photo, another close friend posting a story, or a suggestion for a reel you might enjoy, notifications help surface moments that matter in real time.

Instagram leverages machine learning (ML) models to decide who should get a notification, when to send it, and what content to include. These models are trained to optimize for user positive engagement such as click-through-rate (CTR) – the probability of a user clicking a notification – as well as other metrics like time spent.

However, while engagement-optimized models are effective at driving interactions, there’s a risk that they might overprioritize the product types and authors someone has previously engaged with. This can lead to overexposure to the same creators or the same product types while overlooking other valuable and diverse experiences. 

This means people could miss out on content that would give them a more balanced, satisfying, and enriched experience. Over time, this can make notifications feel spammy and increase the likelihood that people will disable them altogether. 

The real challenge lies in finding the right balance: How can we introduce meaningful diversity into the notification experience without sacrificing the personalization and relevance people on Instagram have come to expect?

To tackle this, we’ve introduced a diversity-aware notification ranking framework that helps deliver more diverse, better curated, and less repetitive notifications. This framework has significantly reduced daily notification volume while improving CTR. It also introduces several benefits:

  • The extensibility of incorporating customized soft penalty (demotion) logic for each dimension, enabling more adaptive and sophisticated diversity strategies.
  • The flexibility of tuning demotion strength across dimensions like content, author, and product type via adjustable weights.
  • The integration of balancing personalization and diversity, ensuring notifications remain both relevant and varied.

The Risks of Notifications without Diversity

The issue of overexposure in notifications often shows up in two major ways:

Overexposure to the same author: People might receive notifications that are mostly about the same friend. For example, if someone often interacts with content from a particular friend, the system may continue surfacing notifications from that person alone – ignoring other friends they also engage with. This can feel repetitive and one-dimensional, reducing the overall value of notifications.

Overexposure to the same product surface: People might mostly receive notifications from the same product surface such as Stories, even when Feed or Reels could provide value. For example, someone may be interested in both reel and story notifications but has recently interacted more often with stories. Because the system heavily prioritizes past engagement, it sends only story notifications, overlooking the person’s broader interests. 

Introducing Instagram’s Diversity-Aware Notification Ranking Framework

Instagram’s diversity-aware notification ranking framework is designed to enhance the notification experience by balancing the predicted potential for user engagement with the need for content diversity. This framework introduces a diversity layer on top of the existing engagement ML models, applying multiplicative penalties to the candidate scores generated by these models, as figure1, below, shows.

The diversity layer evaluates each notification candidate’s similarity to recently sent notifications across multiple dimensions such as content, author, notification type, and product surface. It then applies carefully calibrated penalties—expressed as multiplicative demotion factors—to downrank candidates that are too similar or repetitive. The adjusted scores are used to re-rank the candidates, enabling the system to select notifications that maintain high engagement potential while introducing meaningful diversity. In the end, the quality bar selects the top-ranked candidate that passes both the ranking and diversity criteria.

Figure.1: Instagram’s diversity-aware ranking framework where the diversity layer sits on top of the existing modeling layer and penalizes notifications that are too similar to recently sent ones.

Mathematical Formulation 

Within the diversity layer, we apply a multiplicative demotion factor to the base relevance score of each candidate. Given a notification candidate 𝑐, we compute its final score as the product of its base ranking score and a diversity demotion multiplier:

\text{Score}(c) = R(c) \times D(c)

where R(c) represents the candidate’s base relevance score, and D(c) ∈ [0,1] is a penalty factor that reduces the score based on similarity to recently sent notifications. We define a set of semantic dimensions (e.g., author, product type) along which we want to promote diversity. For each dimension i, we compute a similarity signal pi(c) between candidate c and the set of historical notifications H, using a maximal marginal relevance (MMR) approach:

p_i(c) = \mathrm{max}_{h \in H}\mathrm{sim}_i(c, h)

where simi(·,·) is a predefined similarity function for dimension i. In our baseline implementation, pi(c) is binary: it equals 1 if the similarity exceeds a threshold 𝜏i and 0 otherwise. 

The final demotion multiplier is defined as: 

D(c) = \prod_{i=1}^{m} \left( 1 - w_i \cdot p_i(c) \right)

where each w∈ [0,1] controls the strength of demotion for its respective dimension. This formulation ensures that candidates similar to previously delivered notifications along one or more dimensions are proportionally down-weighted, reducing redundancy and promoting content variation. The use of a multiplicative penalty allows for flexible control across multiple dimensions, while still preserving high-relevance candidates.

The Future of Diversity-Aware Ranking

As we continue evolving our notification diversity-aware ranking system, a next step is to introduce more adaptive, dynamic demotion strategies. Instead of relying on static rules, we plan to make demotion strength responsive to notification volume and delivery timing. For example, as a user receives more notifications—especially of similar type or in rapid succession—the system progressively applies stronger penalties to new notification candidates, effectively mitigating overwhelming experiences caused by high notification volume or tightly spaced deliveries.

Longer term, we see an opportunity to bring large language models (LLMs) into the diversity pipeline. LLMs can help us go beyond surface-level rules by understanding semantic similarity between messages and rephrasing content in more varied, user-friendly ways. This would allow us to personalize notification experiences with richer language and improved relevance while maintaining diversity across topics, tone, and timing.





Source link

Continue Reading

Events & Conferences

Simplifying book discovery with ML-powered visual autocomplete suggestions

Published

on


Every day, millions of customers search for books in various formats (audiobooks, e-books, and physical books) across Amazon and Audible. Traditional keyword autocomplete suggestions, while helpful, usually require several steps before customers find their desired content. Audible took on the challenge of making book discovery more intuitive and personalized while reducing the number of steps to purchase.

We developed an instant visual autocomplete system that enhances the search experience across Amazon and Audible. As the user begins typing a query, our solution provides visual previews with book covers, enabling direct navigation to relevant landing pages instead of the search result page. It also delivers real-time personalized format recommendations and incorporates multiple searchable entities, such as book pages, author pages, and series pages.

Our system needed to understand user intent from just a few keystrokes and determine the most relevant books to display, all while maintaining low latency for millions of queries. Using historical search data, we match keystrokes to products, transforming partial inputs into meaningful search suggestions. To ensure quality, we implemented confidence-based filtering mechanisms, which are particularly important for distinguishing between general queries like “mystery” and specific title searches. To reflect customers’ most recent interests, the system applies time-decay functions to long historical user interaction data.

Related content

Assessing the absolute utility of query results, rather than just their relative utility, improves learning-to-rank models.

To meet the unique requirements of each use case, we developed two distinct technical approaches. On Audible, we deployed a deep pairwise-learning-to-rank (DeepPLTR) model. The DeepPLTR model considers pairs of books and learns to assign a higher score to the one that better matches the customer query.

The DeepPLTR model’s architecture consists of three specialized towers. The left tower factors in contextual features and recent search patterns using a long-short-term-memory model, which processes data sequentially and considers its prior decisions when issuing a new term in the sequence. The middle tower handles keyword and item engagement history. The right tower factors in customer taste preferences and product descriptions to enable personalization. The model learns from paired examples, but at runtime, it relies on books’ absolute scores to assemble a ranked list.

Training architecture of the DeepPLTR model, which takes in paired examples (green and pink blocks). At runtime, the model scores only a single candidate at a time.

For Amazon, we implemented a two-stage modeling approach involving a probabilistic information-retrieval model to determine the book title that best matches each keyword and a second model that personalizes the book format (audiobooks, e-books, and physical books). This dual-strategy approach maintains low latency while still enabling personalization.

In practice, a customer who types “dungeon craw” in the search bar now sees a visual recommendation for the book Dungeon Crawler Carl, complete with book cover, reducing friction by bypassing a search results page and sending the customer directly to the product detail page. On Audible, the system also personalizes autocomplete results and enriches the discovery experience with relevant connections. These include links to the author’s complete works (Matt Dinniman’s author page) and, for titles that belong to a series, links to the full collection (such as the Dungeon Crawler Carl series).

Related content

Using reinforcement learning improves candidate selection and ranking for search, ad platforms, and recommender systems.

On Amazon, when the customer clicks on the title, the model personalizes the right book-format (audiobooks, e-books, physical books) recommendation and directs the customer to the right product detail page.

In both cases, after the customer has entered a certain number of keystrokes, the system employs a model to detect customer intent (e.g., book title intent for Amazon or author intent for Audible) and determine which visual widget should be displayed.

Audible and Amazon books’ visual autocomplete provides customers with more relevant content more rapidly than traditional autocomplete, and its direct navigation reduces the number of steps to find and access desired books — all while handling millions of queries at low latency.

This technology is not just about making book discovery easier; it is laying the foundation for future improvements in search personalization and visual discovery across Amazon’s ecosystem.

Acknowledgements: Jiun Kim, Sumit Khetan, Armen Stepanyan, Jack Xuan, Nathan Brothers, Eddie Chen, Vincent Lee, Soumy Ladha, Justine Luo, Yuchen Zeng, David Torres, Gali Deutsch, Chaitra Ramdas, Christopher Gomez, Sharmila Tamby, Melissa Ma, Cheng Luo, Jeffrey Jiang, Pavel Fedorov, Ronald Denaux, Aishwarya Vasanth, Azad Bajaj, Mary Heer, Adam Lowe, Jenny Wang, Cameron Cramer, Emmanuel Ankrah, Lydia Diaz, Suzette Islam, Fei Gu, Phil Weaver, Huan Xue, Kimmy Dai, Evangeline Yang, Chao Zhu, Anvy Tran, Jessica Wu, Xiaoxiong Huang, Jiushan Yang





Source link

Continue Reading

Events & Conferences

Revolutionizing warehouse automation with scientific simulation

Published

on


Modern warehouses rely on complex networks of sensors to enable safe and efficient operations. These sensors must detect everything from packages and containers to robots and vehicles, often in changing environments with varying lighting conditions. More important for Amazon, we need to be able to detect barcodes in an efficient way.

Related content

Generative AI supports the creation, at scale, of complex, realistic driving scenarios that can be directed to specific locations and environments.

The Amazon Robotics ID (ARID) team focuses on solving this problem. When we first started working on it, we faced a significant bottleneck: optimizing sensor placement required weeks or months of physical prototyping and real-world testing, severely limiting our ability to explore innovative solutions.

To transform this process, we developed Sensor Workbench (SWB), a sensor simulation platform built on NVIDIA’s Isaac Sim that combines parallel processing, physics-based sensor modeling, and high-fidelity 3-D environments. By providing virtual testing environments that mirror real-world conditions with unprecedented accuracy, SWB allows our teams to explore hundreds of configurations in the same amount of time it previously took to test just a few physical setups.

Camera and target selection/positioning

Sensor Workbench users can select different cameras and targets and position them in 3-D space to receive real-time feedback on barcode decodability.

Three key innovations enabled SWB: a specialized parallel-computing architecture that performs simulation tasks across the GPU; a custom CAD-to-OpenUSD (Universal Scene Description) pipeline; and the use of OpenUSD as the ground truth throughout the simulation process.

Parallel-computing architecture

Our parallel-processing pipeline leverages NVIDIA’s Warp library with custom computation kernels to maximize GPU utilization. By maintaining 3-D objects persistently in GPU memory and updating transforms only when objects move, we eliminate redundant data transfers. We also perform computations only when needed — when, for instance, a sensor parameter changes, or something moves. By these means, we achieve real-time performance.

Visualization methods

Sensor Workbench users can pick sphere- or plane-based visualizations, to see how the positions and rotations of individual barcodes affect performance.

This architecture allows us to perform complex calculations for multiple sensors simultaneously, enabling instant feedback in the form of immersive 3-D visuals. Those visuals represent metrics that barcode-detection machine-learning models need to work, as teams adjust sensor positions and parameters in the environment.

CAD to USD

Our second innovation involved developing a custom CAD-to-OpenUSD pipeline that automatically converts detailed warehouse models into optimized 3-D assets. Our CAD-to-USD conversion pipeline replicates the structure and content of models created in the modeling program SolidWorks with a 1:1 mapping. We start by extracting essential data — including world transforms, mesh geometry, material properties, and joint information — from the CAD file. The full assembly-and-part hierarchy is preserved so that the resulting USD stage mirrors the CAD tree structure exactly.

Related content

Two Alexa AI papers present novel methodologies that use vision and language understanding to improve embodied task completion in simulated environments.

To ensure modularity and maintainability, we organize the data into separate USD layers covering mesh, materials, joints, and transforms. This layered approach ensures that the converted USD file faithfully retains the asset structure, geometry, and visual fidelity of the original CAD model, enabling accurate and scalable integration for real-time visualization, simulation, and collaboration.

OpenUSD as ground truth

The third important factor was our novel approach to using OpenUSD as the ground truth throughout the entire simulation process. We developed custom schemas that extend beyond basic 3-D-asset information to include enriched environment descriptions and simulation parameters. Our system continuously records all scene activities — from sensor positions and orientations to object movements and parameter changes — directly into the USD stage in real time. We even maintain user interface elements and their states within USD, enabling us to restore not just the simulation configuration but the complete user interface state as well.

This architecture ensures that when USD initial configurations change, the simulation automatically adapts without requiring modifications to the core software. By maintaining this live synchronization between the simulation state and the USD representation, we create a reliable source of truth that captures the complete state of the simulation environment, allowing users to save and re-create simulation configurations exactly as needed. The interfaces simply reflect the state of the world, creating a flexible and maintainable system that can evolve with our needs.

Application

With SWB, our teams can now rapidly evaluate sensor mounting positions and verify overall concepts in a fraction of the time previously required. More importantly, SWB has become a powerful platform for cross-functional collaboration, allowing engineers, scientists, and operational teams to work together in real time, visualizing and adjusting sensor configurations while immediately seeing the impact of their changes and sharing their results with each other.

New perspectives

In projection mode, an explicit target is not needed. Instead, Sensor Workbench uses the whole environment as a target, projecting rays from the camera to identify locations for barcode placement. Users can also switch between a comprehensive three-quarters view and the perspectives of individual cameras.

Due to the initial success in simulating barcode-reading scenarios, we have expanded SWB’s capabilities to incorporate high-fidelity lighting simulations. This allows teams to iterate on new baffle and light designs, further optimizing the conditions for reliable barcode detection, while ensuring that lighting conditions are safe for human eyes, too. Teams can now explore various lighting conditions, target positions, and sensor configurations simultaneously, gleaning insights that would take months to accumulate through traditional testing methods.

Related content

Amazon researchers draw inspiration from finite-volume methods and adapt neural operators to enforce conservation laws and boundary conditions in deep-learning models of physical systems.

Looking ahead, we are working on several exciting enhancements to the system. Our current focus is on integrating more-advanced sensor simulations that combine analytical models with real-world measurement feedback from the ARID team, further increasing the system’s accuracy and practical utility. We are also exploring the use of AI to suggest optimal sensor placements for new station designs, which could potentially identify novel configurations that users of the tool might not consider.

Additionally, we are looking to expand the system to serve as a comprehensive synthetic-data generation platform. This will go beyond just simulating barcode-detection scenarios, providing a full digital environment for testing sensors and algorithms. This capability will let teams validate and train their systems using diverse, automatically generated datasets that capture the full range of conditions they might encounter in real-world operations.

By combining advanced scientific computing with practical industrial applications, SWB represents a significant step forward in warehouse automation development. The platform demonstrates how sophisticated simulation tools can dramatically accelerate innovation in complex industrial systems. As we continue to enhance the system with new capabilities, we are excited about its potential to further transform and set new standards for warehouse automation.





Source link

Continue Reading

Trending