Connect with us

Books, Courses & Certifications

6 Best Machine Learning Courses: Online Certifications

Published

on


eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

Machine learning (ML) is a rapidly evolving industry and one of the most in-demand skillsets for programmers, data scientists, and aspiring artificial intelligence professionals. Certifications—a formal recognition of your ML expertise by a reputable certifying body—can help you stand out in a competitive job market, driving many ML professionals to seek machine learning certifications from Google, IBM, AWS, and other top AI companies.

Typically, ML certification programs are taught by industry experts or professors and come with course material in the form of videos, quizzes, assignments, and readings, all culminating in a final certification exam—and possibly resulting in career advancement. Here are my top picks for the best machine learning certifications:


Machine Learning Certification Comparison Chart

When selecting a machine learning certification, it’s important to take into account the certifying body, duration of the program, and course fee. You should also make sure it aligns with your artificial intelligence and ML experience level and offers study resources and techniques that fit your learning style.

Top 6 Machine Learning Certificates and Certifications

Machine learning certificates provide valuable skills for anyone seeking a career in artificial intelligence and data science. Beginner courses introduce the basics of machine learning, statistical concepts, data analysis, and Python programming, while intermediate courses cover more in-depth lessons on ML, AI models, deep learning, and more. Advanced learners can validate their expertise in machine learning algorithms, model tuning, and real-world ML applications.

Our list covers both certificates and certifications. Certificates verify that you completed a course or training, while certifications are industry-recognized credentials demonstrating your specific skillset and knowledge.

Understanding Machine Learning

Best for Understanding ML Basics | Beginner Level

This non-technical course offered by DataCamp covers the fundamentals of machine learning and its relation to data science and AI. It discusses machine learning jargon, different types of ML, evaluating ML models, and deep learning use cases. DataCamp offers the first chapters for free, so you’ll be able to learn about the basics of machine learning, relevant fields, and the process of an ML workflow. Paid subscribers will be able to access in-depth ML lessons and explore deep learning applications such as computer vision and natural language processing (NLP).

Why I Picked It

I chose this course because it offers clear, concise, and easy-to-understand lessons for beginners looking for a short course on machine learning basics with no coding involved. It provides hands-on experience to reinforce learning and real-world examples so learners can get a better understanding of how ML is used in various use cases. The course is also accessible for beginners who want to explore the lessons before committing financially, as DataCamp offers free chapters. You need to upgrade to DataCamp’s paid version, which starts at $13 per month, billed annually.

Skills Acquired

  • Basic knowledge of machine learning
  • Supervised vs unsupervised learning
  • Machine learning workflow process
  • Machine learning models
  • Deep learning use cases

Key Course Details

The following is a high-level overview of what you need to know about course requirements, fees, duration, format, and content:

Course Requirements

Course Fee, Duration, and Format

  • Free (Chapter One)
  • Starts at $13 per month, billed annually for full access
  • Two hours to complete
  • Self-paced online learning via DataCamp

Course Content and Assessments

  • What is machine learning?
  • Machine learning models
  • Deep learning 

The remaining two chapters are only accessible to paid users. These chapters include assessments and exercises on different types of learning, hyperparameter tuning, sentiment analysis, spotting ML bias, and more.

Machine Learning Specialization

Best for Developing ML Practical Skills | Beginner Level

Stanford and DeepLearning.AI offer this beginner-friendly machine learning specialization that introduces key artificial intelligence concepts and teaches how to build and train ML models using Python. Unlike most other certification programs, this three-course ML specialization targets total beginners, requiring only high school math knowledge and basic coding skills.

With its low barrier to entry and immersive, comprehensive, hands-on learning experience, the Machine Learning Specialization provides the perfect option for aspiring AI professionals looking to break into the field.

Machine Learning Specialization course title screenshot.

Why I Picked It

This certification is ideal for beginners planning to break into machine learning, data science careers, software development, and other relevant fields. It allows you to master fundamental AI concepts and develop practical machine-learning skills through a comprehensive program divided into three courses taught by AI visionary Andrew Ng. After completing the program, learners can earn a shareable certificate awarded by Stanford Online and DeepLearning.AI, known to offer industry-recognized online AI programs.

Skills Acquired

  • Building ML models with NumPy and scikit-learn
  • Applying best practices for ML development and use
  • Building and training a neural network on TensorFlow
  • Creating recommender systems with a collaborative filtering approach

Key Course Details

The following is a high-level overview of what you need to know about course requirements, fees, duration, format, and content:

Course Requirements

  • Basic coding (for loops, functions, if/else statements)
  • High school-level math (arithmetic, algebra)

Course Fee, Duration, and Format

  • $49 per month
  • Two months at 10 hours a week
  • Self-paced online learning via Coursera

Course Content and Assessments

  • Supervised Machine Learning: Regression and Classification
  • Advanced Learning Algorithms
  • Unsupervised Learning, Recommenders, Reinforcement Learning

IBM Machine Learning Professional Certificate

Best for Mastering Data-Centric ML | Intermediate Level

IBM’s Machine Learning Professional Certificate is designed to help intermediate-level tech professionals master practical, up-to-date machine learning concepts and skills that they can apply to the analysis of real-world datasets. Through six courses, you’ll learn exploratory data analysis for machine learning, supervised ML, unsupervised ML, and deep/reinforcement learning. All of this culminates in a final capstone project where you’ll train a neural network, construct regression models, create recommender systems in Python, and more.

IBM Machine Learning Professional Certificate course screenshot.

Why I Picked It

IBM’s six-course professional certificate is an ideal program for scientists, business analysts, and software developers who want to improve their analytical skills in data science and machine learning. However, the certificate is also highly useful to ML professionals aspiring to a variety of data-focused roles. It stands out for its focus on real-world skills that allow AI professionals to prepare for a career in machine learning. Through this professional certificate, you will master current and in-demand practical ML skills from a reputable certifying body and leading AI company.

Skills Acquired

  • Practical ML skills and knowledge experts use
  • Knowledge of KNN, PCA, and non-negative collaborative filtering
  • Comparing and contrasting ML algorithms using Python
  • Predicting course ratings by training a neural network
  • Constructing regression and classification models

Key Course Details

The following is a high-level overview of what you need to know about course requirements, fees, duration, format, and content:

Course Requirements

  • Python programming skills
  • Knowledge of statistics and linear algebra

Course Fee, Duration, and Format

  • $39 per month
  • Three months at 10 hours a week
  • Self-paced online learning via Coursera

Course Content and Assessments

  • Exploratory Data Analysis for Machine Learning
  • Supervised Machine Learning: Regression
  • Supervised Machine Learning: Classification
  • Unsupervised Machine Learning
  • Deep Learning and Reinforcement Learning
  • Machine Learning Capstone

At the end of the six-course program, you need to complete the capstone project, which includes developing a final presentation and evaluating your peers’ projects.

Microsoft Azure Data Scientist Associate Certification

Best for Showcasing ML Expertise in Microsoft Azure | Intermediate Level

The Microsoft Azure Data Scientist Associate Certification is a 100-minute, online exam for intermediate data scientists and developers familiar with using data science and machine learning techniques to develop and run machine learning workloads on Azure. The skills tested in the exam include machine learning solution design and prep, model training, data exploration, model deployment, and model retraining—all about Microsoft Azure. To help you prepare for the exam, Microsoft offers 13 hours of course material, 100 exam prep videos, a practice assessment, and an exam sandbox where you can practice answering questions in the same interface you’ll see during exam day.

Microsoft Azure Data Scientist Associate Certification course title screenshot.

Why I Picked It

The Microsoft Azure Data Scientist Associate certification allows you to stand out in a competitive AI job market. Earning this certification demonstrates your ability to manage data preparation, train and deploy models, and monitor ML solutions with Python, Azure Machine Learning, and MLflow. Professional developers, data scientists, and ML engineers who want to validate their abilities to deploy and maintain machine learning workloads on Azure will find this credential valuable in positioning themselves as experts in data science and machine learning.

Skills Acquired

  • Creating suitable working environments for data science workloads
  • Training machine learning models
  • Implementing pipelines
  • Preparing  for production
  • Managing, deploying, and monitoring scalable machine learning sol

Key Course Details

The following is a high-level overview of what you need to know about certification requirements, fees, duration, format, and content:

Certification Exam Requirements

Course Fee, Duration, and Format

  • $165
  • 100 minutes to complete the assessment
  • Online-proctored exam

Certification Exam Content

  • Designing and preparing a machine learning solution
  • Exploring data and training models
  • Preparing a model for deployment
  • Deploying and retraining a model

AWS Certified Machine Learning

Best for Validating ML Expertise in AWS | Advanced Level

The AWS Certified Machine Learning Speciality is a three-hour exam that validates your ability to build, train, tune, and deploy machine learning models on AWS. The exam can be taken in-person or online and will test how well you can state the intuition behind basic ML algorithms, perform hyperparameter optimization, and follow model training and deployment best practices. For those looking to prepare, check out the AWS Skill Builder, where you’ll find helpful course material and practice questions.

AWS Certified Machine Learning course title screenshot.

Why I Picked It

This certificate is for professional developers and data scientists who have worked with ML in AWS and want to validate this skillset for employers, perhaps to land a more senior data science role. I chose this certification because earning AWS Certified Machine Learning Specialty demonstrates your expertise in building, training, tuning, and deploying ML models on AWS. Additionally, gaining certification from a highly respected certifying body like AWS offers a competitive advantage for professionals seeking to stand out in the AI industry.

Skills Acquired

  • Designing, deploying, optimizing, and maintaining ML solutions
  • Selecting the appropriate ML approach for a business problem
  • Identifying appropriate AWS services to implement ML solutions
  • Implementing scalable, cost-optimized, reliable, and secure ML solutions

Key Course Details

The following is a high-level overview of what you need to know about certification requirements, fees, duration, format, and content:

Certification Exam Requirements

  • At least two years of hands-on experience in ML using AWS Cloud
  • Ability to express intuition behind basic ML algorithms
  • Experience performing basic hyperparameter optimization, ML, and deep learning frameworks
  • Ability to follow model training, deployment, and operational best practices

Course Fee, Duration, and Format

  • $300
  • Three hours to complete the exam
  • Pearson VUE testing center or online proctored exam

Certification Exam Content

There are two types of questions on the exam, such as multiple choice and multiple response. The certification exam covers the following domains:

  • Domain 1: Data Engineering
  • Domain 2: Exploratory Data Analysis
  • Domain 3: Modeling
  • Domain 4: Machine Learning Implementation and Operations

Google Professional Machine Learning Engineer

Best for Demonstrating ML Skills Using Google Cloud Solutions | Advanced Level

The Google Professional Machine Learning Engineer Certificate is an exam for ML professionals who build and optimize ML models using Google Cloud technologies and best practices. Sections of the exam include architecting low-code ML solutions, collaborating with teams to manage models, scaling prototypes into ML models, serving and scaling ML models, automating ML pipelines, and monitoring ML solutions. Google offers learning materials in their Machine Learning Engineer Learning Path, where you’ll find 14 courses and one lab. Google also offers an eight-course series through Coursera for preparing for the exam.

Google Cloud - Professional Machine Learning Engineer course title screenshot.

Why I Picked It

Professional Machine Learning Engineer allows working ML engineers and developers to showcase their knowledge of Google Cloud technologies, ML engineering best practices, and ML techniques. By earning this industry-recognized certification, you demonstrate a strong understanding of Google Cloud’s ML ecosystem and its real-world use cases, making you a valuable asset for any organization looking to apply Google Cloud to ML workflows.

Skills Acquired

  • Designing low-code AI solutions
  • Scaling prototypes into ML models
  • Automating and orchestrating ML pipelines
  • Collaborating within and across teams
  • Serving and scaling models
  • Monitoring AI solutions

Key Course Details

The following is a high-level overview of what you need to know about certification requirements, fees, duration, format, and content:

Certification Exam Requirements

  • Three-plus years of industry experience, including at least one year of designing and managing solutions using Google Cloud

Course Fee, Duration, and Format

  • $200 plus tax where applicable
  • Two hours (50-60 items)
  • Onsite-proctored exam at a testing center or online-proctored exam

Certification Exam Content

  • Section 1: Architecting Low-Code AI Solutions
  • Section 2: Collaborating Within and Across Teams to Manage Data and Models
  • Section 3: Scaling Prototypes Into ML Models
  • Section 4: Serving and Scaling Models
  • Section 5: Automating and Orchestrating ML Pipelines
  • Section 6: Monitoring AI Solutions

Key Benefits of Earning a Machine Learning Certification

Below are some of the best reasons to get your machine learning certification, ranging from launching an ML career to staying current with ML techniques.

Validate Your Machine Learning Skills and Knowledge

Machine learning certifications demonstrate your ability to apply your skills to real-world problems, making you a valuable asset to your employers. Telling a potential employer that you have extensive experience developing ML solutions in Google Cloud is one thing, but showing them a certificate from Google provides you an edge. With certificate programs or online courses, you can pass assessments and earn certificates from reputable institutions that prove you have the knowledge and skills to stand out in the ML and data science job market.

Start a Career in Machine Learning

Machine learning certifications can be a valuable tool for launching a career in the field. If you’re not sure about the difference between ML, deep learning, and generative AI, some certifications are designed to help total novices learn the basics. Introductory courses discuss the fundamentals of machine learning, practical ML skills, data analysis, and more.

Learn the Current ML Techniques, Tools, and Trends

Certificate programs provide learning materials that draw from techniques, tools, and frameworks that professional data scientists and ML engineers use in their real-world jobs. This makes a program a valuable option for even the seasoned ML professional looking to update their skill set to match the current best practices while gaining recognition for it.

Learn at Affordable Prices Compared to College Degrees

Compared to college degrees in computer science or data analysis, which cost over six figures, these certification programs enable you to earn credit for machine learning skills and gain a respected credential for as low as a couple hundred dollars.

Go at Your Own Pace

Certificate programs enable you to prepare for certification exams and take machine learning courses at your speed, from the comfort of your home. This makes them ideal for busy tech professionals.

How to Choose the Best Machine Learning Certification for You

When deciding on a machine learning certificate, it’s important to take into account the following considerations:

  • Price: Find a certification that works with your budget.
  • Prerequisites: Make sure the courses and/or exams cater to your specific experience level.
  • Specialty: Some programs are designed for professionals familiar with a specific solution (for example, Google’s certificate is for building ML models using G Suite technologies), so pick a program that focuses on the tools you plan to work with.
  • Learning Materials: Whether you’re learning a new ML subject from scratch or filling in some gaps to prepare for the exam, check out the study materials and online courses to see if they are sufficient for your needs.
  • Career Goals: Pick a certificate program that will help you land the job or get the promotion you desire.

In sum, the best machine learning certification will be one that fits your budget, experience level, and timeline, and helps you achieve your specific machine learning and AI career goals.

How I Evaluated Machine Learning Certifications

To evaluate the various machine learning certifications on the market and find the best ones, I looked at the cost of the certification, the reputation of the certifying body, the quality of learning materials, and the accessibility.

  • Cost: I looked into how much the machine learning certification costs in terms of time commitment and exam and course fees.
  • Reputation of the Certifying Body: The credibility of the certifying body came into my consideration since they’re likely to provide cutting-edge courses and will look great on your resume to future employers.
  • Quality of Course/Exam Preparation Material: I examined the learning materials to see if they would adequately prepare an aspiring machine learning professional for the jobs they’re applying to. I focused on hands-on learning experiences like projects and assignments.
  • Accessibility: To assess the accessibility, I checked out how easy it was for users to prepare for and take the exam from home, as well as factors like access to course instructors and self-paced learning.

Frequently Asked Questions (FAQs)

How do You Prepare for a Machine Learning Certification?

To prepare for machine learning certification, start by reading the exam’s prerequisites. If you feel you fall short, check to see if the certifying body offers preparation materials that will help you round out your knowledge. Most programs offer a learning path that includes online videos, practice questions, and readings. Some course-based programs even offer feedback on your assignments as well as live discussions hosted by course facilitators.

Which Machine Learning Certification Should I Get First?

The ML certification that you feel most confident passing should be your first one. Take the AWS credential exam, for instance, if you have prior experience working with AWS on ML projects. Take beginner-friendly certificates initially if you’re a complete novice. That’ll ensure you get the credentials you deserve as quickly as possible.

Can I Get a Machine Learning Job With Certifications Alone?

Though it may be difficult without on-the-job experience, you can still get a machine learning job with just a certificate by using these tactics:

• Learn ML in Public: Take on machine learning and coding projects and write about your findings and the process on social media to position yourself as an expert.
• Pretend You Have the Job: Find areas of interest where you can apply machine learning to improve some aspect, then create an ML model or solution and share it.
• Focus on Smaller Companies: Startups will be more likely to hire you for a niche ML skill than big companies, who generally want people with advanced degrees.
• Prepare for Interviews: Practice talking about the machine learning projects you’ve worked on, the latest technologies and trends, and your relevant technical skills.

If you do these activities consistently, you’ll have a greater chance of landing a machine learning job with nothing but your certification. At any rate, your prospects will be better than if you merely sent out resumes highlighting your certificate and in-course projects.

Bottom Line: Best Machine Learning Certifications

A machine learning certification is one of the most affordable and time-efficient ways to validate your machine learning knowledge and expertise—and get hired in a lucrative new role. Once you’ve completed the exam, you can list the formal certificate on your LinkedIn profile and resume to help you land machine learning jobs or get a promotion. With many machine learning certifications and courses available, the best option offers a comprehensive curriculum, practical skills, and an industry-recognized credential. My recommendation lists the top machine learning programs, but consider your long-term career goals and the specific ML area you want to pursue before deciding which option is right for you.

If you’re looking for additional AI certifications to help you stand out, check out our list of the top AI certifications.



Source link

Books, Courses & Certifications

Complete Guide with Curriculum & Fees

Published

on


The year 2025 for AI education provides choices catering to learning style, career goal, and budget. The Logicmojo Advanced Data Science & AI Program has emerged as the top one, offering comprehensive training with proven results in placement for those wishing to pursue job-oriented training. It offers the kind of live training, projects, and career support that fellow professionals seek when interested in turning into a high-paying AI position. 

On the other hand, for the independent learner seeking prestige credentials, a few other good options might include programs from Stanford, MIT, and DeepLearning.AI. Google and IBM certificates are an inexpensive footing for a beginner, while, at the opposite end of the spectrum, a Carnegie Mellon certificate is considered the ultimate academic credential in AI.

Whatever choice you make in 2025 to further your knowledge in AI will place you at the forefront of technology innovation. AI, expected to generate millions of jobs, has the potential to revolutionize every industry, and so whatever you learn today will be the deciding factor in your career waters for at least the next few decades. 



Source link

Continue Reading

Books, Courses & Certifications

Artificial Intelligence and Machine Learning Bootcamp Powered by Simplilearn

Published

on


Artificial Intelligence and Machine Learning are noteworthy game-changers in today’s digital world. Technological wonders once limited to science fiction have become science fact, giving us innovations such as self-driving cars, intelligent voice-operated virtual assistants, and computers that learn and grow.

The two fields are making inroads into all areas of our lives, including the workplace, showing up in occupations such as Data Scientist and Digital Marketer. And for all the impressive things that Artificial Intelligence and Machine Learning have accomplished in the last ten years, there’s so much more in store.

Become the Highest Paid AI Engineer!

With Our Trending AI Engineer Master ProgramKnow More

Simplilearn wants today’s IT professionals to be better equipped to embrace these new technologies. Hence, it offers Machine Learning Bootcamp, held in conjunction with Caltech’s Center for Technology and Management Education (CTME) and in collaboration with IBM.

The bootcamp covers the relevant points of Artificial Intelligence and Machine Learning, exploring tools and concepts such as Python and TensorFlow. The course optimizes the academic excellence of Caltech and the industry prowess of IBM, creating an unbeatable learning resource that supercharges your skillset and prepares you to navigate the world of AI/ML better.

Why is This a Great Bootcamp?

When you bring together an impressive lineup of Simplilearn, Caltech, and IBM, you expect nothing less than an excellent result. The AI and Machine Learning Bootcamp delivers as promised.

This six-month program deals with vital AI/ML concepts such as Deep Learning, Statistics, and Data Science With Python. Here is a breakdown of the diverse and valuable information the bootcamp offers:

  • Orientation. The orientation session prepares you for the rigors of an intense, six-month learning experience, where you dedicate from five to ten hours a week to learning the latest in AI/ML skills and concepts.
  • Introduction to Artificial Intelligence. There’s a difference between AI and ML, and here’s where you start to learn this. This offering is a beginner course covering the basics of AI and workflows, Deep Learning, Machine Learning, and other details.
  • Python for Data Science. Many data scientists prefer to use the Python programming language when working with AI/ML. This section deals with Python, its libraries, and using a Jupyter-based lab environment to write scripts.
  • Applied Data Science with Python. Your exposure to Python continues with this study of Python’s tools and techniques used for Data Analytics.
  • Machine Learning. Now we come to the other half of the AI/ML partnership. You will learn all about Machine Learning’s chief techniques and concepts, including heuristic aspects, supervised/unsupervised learning, and developing algorithms.
  • Deep Learning with Keras and Tensorflow. This section shows you how to use Keras and TensorFlow frameworks to master Deep Learning models and concepts and prepare Deep Learning algorithms.
  • Advanced Deep Learning and Computer Vision. This advanced course takes Deep Learning to a new level. This module covers topics like Computer Vision for OCR and Object Detection, and Computer Vision Basics with Python.
  • Capstone project. Finally, it’s time to take what you have learned and implement your new AI/ML skills to solve an industry-relevant issue.

Become the Highest Paid AI Engineer!

With Our Trending AI Engineer Master ProgramKnow More

Become the Highest Paid AI Engineer!

The course also offers students a series of electives:

  • Statistics Essentials for Data Science. Statistics are a vital part of Data Science, and this elective teaches you how to make data-driven predictions via statistical inference.
  • NLP and Speech Recognition. This elective covers speech-to-text conversion, text-to-speech conversion, automated speech recognition, voice-assistance devices, and much more.
  • Reinforcement Learning. Learn how to solve reinforcement learning problems by applying different algorithms and strategies like TensorFlow and Python.
  • Caltech Artificial Intelligence and Machine Learning Bootcamp Masterclass. These masterclasses are conducted by qualified Caltech and IBM instructors.

This AI and ML Bootcamp gives students a bounty of AI/ML-related benefits like:

  • Campus immersion, which includes an exclusive visit to Caltech’s robotics lab.
  • A program completion certificate from Caltech CTME.
  • A Caltech CTME Circle membership.
  • The chance to earn up to 22 CEUs courtesy of Caltech CTME.
  • An online convocation by the Caltech CTME Program Director.
  • A physical certificate from Caltech CTME if you request one.
  • Access to hackathons and Ask Me Anything sessions from IBM.
  • More than 25 hands-on projects and integrated labs across industry verticals.
  • A Level Up session by Andrew McAfee, Principal Research Scientist at MIT.
  • Access to Simplilearn’s Career Service, which will help you get noticed by today’s top hiring companies.
  • Industry-certified certificates for IBM courses.
  • Industry masterclasses delivered by IBM.
  • Hackathons from IBM.
  • Ask Me Anything (AMA) sessions held with the IBM leadership.

And these are the skills the course covers, all essential tools for working with today’s AI and ML projects:

  • Statistics
  • Python
  • Supervised Learning
  • Unsupervised Learning
  • Recommendation Systems
  • NLP
  • Neural Networks
  • GANs
  • Deep Learning
  • Reinforcement Learning
  • Speech Recognition
  • Ensemble Learning
  • Computer Vision

About Caltech CTME

Located in California, Caltech is a world-famous, highly respected science and engineering institution featuring some of today’s brightest scientific and technological minds. Contributions from Caltech alumni have earned worldwide acclaim, including over three dozen Nobel prizes. Caltech CTME instructors offer this quality of learning to our students by holding bootcamp master classes.

About IBM

IBM was founded in 1911 and has earned a reputation as the top IT industry leader and master of IT innovation.

How to Thrive in the Brave New World of AI and ML

Machine Learning and Artificial Intelligence have enormous potential to change our world for the better, but the fields need people of skill and vision to help lead the way. Somehow, there must be a balance between technological advancement and how it impacts people (quality of life, carbon footprint, job losses due to automation, etc.).

The AI and Machine Learning Bootcamp helps teach and train students, equipping them to assume a role of leadership in the new world that AI and ML offer.



Source link

Continue Reading

Books, Courses & Certifications

Teaching Developers to Think with AI – O’Reilly

Published

on


Developers are doing incredible things with AI. Tools like Copilot, ChatGPT, and Claude have rapidly become indispensable for developers, offering unprecedented speed and efficiency in tasks like writing code, debugging tricky behavior, generating tests, and exploring unfamiliar libraries and frameworks. When it works, it’s effective, and it feels incredibly satisfying.

But if you’ve spent any real time coding with AI, you’ve probably hit a point where things stall. You keep refining your prompt and adjusting your approach, but the model keeps generating the same kind of answer, just phrased a little differently each time, and returning slight variations on the same incomplete solution. It feels close, but it’s not getting there. And worse, it’s not clear how to get back on track.

That moment is familiar to a lot of people trying to apply AI in real work. It’s what my recent talk at O’Reilly’s AI Codecon event was all about.

Over the last two years, while working on the latest edition of Head First C#, I’ve been developing a new kind of learning path, one that helps developers get better at both coding and using AI. I call it Sens-AI, and it came out of something I kept seeing:

There’s a learning gap with AI that’s creating real challenges for people who are still building their development skills.

My recent O’Reilly Radar article “Bridging the AI Learning Gap” looked at what happens when developers try to learn AI and coding at the same time. It’s not just a tooling problem—it’s a thinking problem. A lot of developers are figuring things out by trial and error, and it became clear to me that they needed a better way to move from improvising to actually solving problems.

From Vibe Coding to Problem Solving

Ask developers how they use AI, and many will describe a kind of improvisational prompting strategy: Give the model a task, see what it returns, and nudge it toward something better. It can be an effective approach because it’s fast, fluid, and almost effortless when it works.

That pattern is common enough to have a name: vibe coding. It’s a great starting point, and it works because it draws on real prompt engineering fundamentals—iterating, reacting to output, and refining based on feedback. But when something breaks, the code doesn’t behave as expected, or the AI keeps rehashing the same unhelpful answers, it’s not always clear what to try next. That’s when vibe coding starts to fall apart.

Senior developers tend to pick up AI more quickly than junior ones, but that’s not a hard-and-fast rule. I’ve seen brand-new developers pick it up quickly, and I’ve seen experienced ones get stuck. The difference is in what they do next. The people who succeed with AI tend to stop and rethink: They figure out what’s going wrong, step back to look at the problem, and reframe their prompt to give the model something better to work with.

When developers think critically, AI works better. (slide from my May 8, 2025, talk at O’Reilly AI Codecon)

The Sens-AI Framework

As I started working more closely with developers who were using AI tools to try to find ways to help them ramp up more easily, I paid attention to where they were getting stuck, and I started noticing that the pattern of an AI rehashing the same “almost there” suggestions kept coming up in training sessions and real projects. I saw it happen in my own work too. At first it felt like a weird quirk in the model’s behavior, but over time I realized it was a signal: The AI had used up the context I’d given it. The signal tells us that we need a better understanding of the problem, so we can give the model the information it’s missing. That realization was a turning point. Once I started paying attention to those breakdown moments, I began to see the same root cause across many developers’ experiences: not a flaw in the tools but a lack of framing, context, or understanding that the AI couldn’t supply on its own.

The Sens-AI framework steps (slide from my May 8, 2025, talk at O’Reilly AI Codecon)

Over time—and after a lot of testing, iteration, and feedback from developers—I distilled the core of the Sens-AI learning path into five specific habits. They came directly from watching where learners got stuck, what kinds of questions they asked, and what helped them move forward. These habits form a framework that’s the intellectual foundation behind how Head First C# teaches developers to work with AI:

  1. Context: Paying attention to what information you supply to the model, trying to figure out what else it needs to know, and supplying it clearly. This includes code, comments, structure, intent, and anything else that helps the model understand what you’re trying to do.
  2. Research: Actively using AI and external sources to deepen your own understanding of the problem. This means running examples, consulting documentation, and checking references to verify what’s really going on.
  3. Problem framing: Using the information you’ve gathered to define the problem more clearly so the model can respond more usefully. This involves digging deeper into the problem you’re trying to solve, recognizing what the AI still needs to know about it, and shaping your prompt to steer it in a more productive direction—and going back to do more research when you realize that it needs more context.
  4. Refining: Iterating your prompts deliberately. This isn’t about random tweaks; it’s about making targeted changes based on what the model got right and what it missed, and using those results to guide the next step.
  5. Critical thinking: Judging the quality of AI output rather than just simply accepting it. Does the suggestion make sense? Is it correct, relevant, plausible? This habit is especially important because it helps developers avoid the trap of trusting confident-sounding answers that don’t actually work.

These habits let developers get more out of AI while keeping control over the direction of their work.

From Stuck to Solved: Getting Better Results from AI

I’ve watched a lot of developers use tools like Copilot and ChatGPT—during training sessions, in hands-on exercises, and when they’ve asked me directly for help. What stood out to me was how often they assumed the AI had done a bad job. In reality, the prompt just didn’t include the information the model needed to solve the problem. No one had shown them how to supply the right context. That’s what the five Sens-AI habits are designed to address: not by handing developers a checklist but by helping them build a mental model for how to work with AI more effectively.

In my AI Codecon talk, I shared a story about my colleague Luis, a very experienced developer with over three decades of coding experience. He’s a seasoned engineer and an advanced AI user who builds content for training other developers, works with large language models directly, uses sophisticated prompting techniques, and has built AI-based analysis tools.

Luis was building a desktop wrapper for a React app using Tauri, a Rust-based toolkit. He pulled in both Copilot and ChatGPT, cross-checking output, exploring alternatives, and trying different approaches. But the code still wasn’t working.

Each AI suggestion seemed to fix part of the problem but break another part. The model kept offering slightly different versions of the same incomplete solution, never quite resolving the issue. For a while, he vibe-coded through it, adjusting the prompt and trying again to see if a small nudge would help, but the answers kept circling the same spot. Eventually, he realized the AI had run out of context and changed his approach. He stepped back, did some focused research to better understand what the AI was trying (and failing) to do, and applied the same habits I emphasize in the Sens-AI framework.

That shift changed the outcome. Once he understood the pattern the AI was trying to use, he could guide it. He reframed his prompt, added more context, and finally started getting suggestions that worked. The suggestions only started working once Luis gave the model the missing pieces it needed to make sense of the problem.

Applying the Sens-AI Framework: A Real-World Example

Before I developed the Sens-AI framework, I ran into a problem that later became a textbook case for it. I was curious whether COBOL, a decades-old language developed for mainframes that I had never used before but wanted to learn more about, could handle the basic mechanics of an interactive game. So I did some experimental vibe coding to build a simple terminal app that would let the user move an asterisk around the screen using the W/A/S/D keys. It was a weird little side project—I just wanted to see if I could make COBOL do something it was never really meant for, and learn something about it along the way.

The initial AI-generated code compiled and ran just fine, and at first I made some progress. I was able to get it to clear the screen, draw the asterisk in the right place, handle raw keyboard input that didn’t require the user to press Enter, and get past some initial bugs that caused a lot of flickering.

But once I hit a more subtle bug—where ANSI escape codes like ";10H" were printing literally instead of controlling the cursor—ChatGPT got stuck. I’d describe the problem, and it would generate a slightly different version of the same answer each time. One suggestion used different variable names. Another changed the order of operations. A few attempted to reformat the STRING statement. But none of them addressed the root cause.

The COBOL app with a bug, printing a raw escape sequence instead of moving the asterisk.

The pattern was always the same: slight code rewrites that looked plausible but didn’t actually change the behavior. That’s what a rehash loop looks like. The AI wasn’t giving me worse answers—it was just circling, stuck on the same conceptual idea. So I did what many developers do: I assumed the AI just couldn’t answer my question and moved on to another problem.

At the time, I didn’t recognize the rehash loop for what it was. I assumed ChatGPT just didn’t know the answer and gave up. But revisiting the project after developing the Sens-AI framework, I saw the whole exchange in a new light. The rehash loop was a signal that the AI needed more context. It got stuck because I hadn’t told it what it needed to know.

When I started working on the framework, I remembered this old failure and thought it’d be a perfect test case. Now I had a set of steps that I could follow:

  • First, I recognized that the AI had run out of context. The model wasn’t failing randomly—it was repeating itself because it didn’t understand what I was asking it to do.
  • Next, I did some targeted research. I brushed up on ANSI escape codes and started reading the AI’s earlier explanations more carefully. That’s when I noticed a detail I’d skimmed past the first time while vibe coding: When I went back through the AI explanation of the code that it generated, I saw that the PIC ZZ COBOL syntax defines a numeric-edited field. I suspected that could potentially cause it to introduce leading spaces into strings and wondered if that could break an escape sequence.
  • Then I reframed the problem. I opened a new chat and explained what I was trying to build, what I was seeing, and what I suspected. I told the AI I’d noticed it was circling the same solution and treated that as a signal that we were missing something fundamental. I also told it that I’d done some research and had three leads I suspected were related: how COBOL displays multiple items in sequence, how terminal escape codes need to be formatted, and how spacing in numeric fields might be corrupting the output. The prompt didn’t provide answers; it just gave some potential research areas for the AI to investigate. That gave it what it needed to find the additional context it needed to break out of the rehash loop.
  • Once the model was unstuck, I refined my prompt. I asked follow-up questions to clarify exactly what the output should look like and how to construct the strings more reliably. I wasn’t just looking for a fix—I was guiding the model toward a better approach.
  • And most of all, I used critical thinking. I read the answers closely, compared them to what I already knew, and decided what to try based on what actually made sense. The explanation checked out. I implemented the fix, and the program worked.
My prompt that broke ChatGPT out of its rehash loop

Once I took the time to understand the problem—and did just enough research to give the AI a few hints about what context it was missing—I was able to write a prompt that broke ChatGPT out of the rehash loop, and it generated code that did exactly what I needed. The generated code for the working COBOL app is available in this GitHub GIST.

The working COBOL app that moves an asterisk around the screen

Why These Habits Matter for New Developers

I built the Sens-AI learning path in Head First C# around the five habits in the framework. These habits aren’t checklists, scripts, or hard-and-fast rules. They’re ways of thinking that help people use AI more productively—and they don’t require years of experience. I’ve seen new developers pick them up quickly, sometimes faster than seasoned developers who didn’t realize they were stuck in shallow prompting loops.

The key insight into these habits came to me when I was updating the coding exercises in the most recent edition of Head First C#. I test the exercises using AI by pasting the instructions and starter code into tools like ChatGPT and Copilot. If they produce the correct solution, that means I’ve given the model enough information to solve it—which means I’ve given readers enough information too. But if it fails to solve the problem, something’s missing from the exercise instructions.

The process of using AI to test the exercises in the book reminded me of a problem I ran into in the first edition, back in 2007. One exercise kept tripping people up, and after reading a lot of feedback, I realized the problem: I hadn’t given readers all the information they needed to solve it. That helped connect the dots for me. The AI struggles with some coding problems for the same reason the learners were struggling with that exercise—because the context wasn’t there. Writing a good coding exercise and writing a good prompt both depend on understanding what the other side needs to make sense of the problem.

That experience helped me realize that to make developers successful with AI, we need to do more than just teach the basics of prompt engineering. We need to explicitly instill these thinking habits and give developers a way to build them alongside their core coding skills. If we want developers to succeed, we can’t just tell them to “prompt better.” We need to show them how to think with AI.

Where We Go from Here

If AI really is changing how we write software—and I believe it is—then we need to change how we teach it. We’ve made it easy to give people access to the tools. The harder part is helping them develop the habits and judgment to use them well, especially when things go wrong. That’s not just an education problem; it’s also a design problem, a documentation problem, and a tooling problem. Sens-AI is one answer, but it’s just the beginning. We still need clearer examples and better ways to guide, debug, and refine the model’s output. If we teach developers how to think with AI, we can help them become not just code generators but thoughtful engineers who understand what their code is doing and why it matters.



Source link

Continue Reading

Trending